Publications by authors named "Marcella O'Reilly"

Adipose tissue remodeling and dysfunction, characterized by elevated inflammation and insulin resistance, play a central role in obesity-related development of type 2 diabetes (T2D) and cardiovascular diseases. Long intergenic non-coding RNAs (lincRNAs) are important regulators of cellular functions. Here, we describe the functions of linc-ADAIN (adipose anti-inflammatory), an adipose lincRNA that is downregulated in white adipose tissue of obese humans.

View Article and Find Full Text PDF

Background: Long noncoding RNAs (lncRNAs) have emerged as novel regulators of macrophage biology and inflammatory cardiovascular diseases. However, studies focused on lncRNAs in human macrophage subtypes, particularly human lncRNAs that are not conserved in rodents, are limited.

Methods: Through RNA-sequencing of human monocyte-derived macrophages, we identified suppressor of inflammatory macrophage apoptosis lncRNA ().

View Article and Find Full Text PDF

The relationship between systemic immunity and neuroinflammation is widely recognised. Infiltration of peripheral immune cells to the CNS during certain chronic inflammatory states contributes significantly to neuropathology. Obesity and its co-morbidities are primary risk factors for neuroinflammatory and neurodegenerative conditions, including Alzheimer's disease (AD).

View Article and Find Full Text PDF

Many complex disease risk loci map to intergenic regions containing long intergenic noncoding RNAs (lincRNAs). The majority of these is not conserved outside humans, raising the question whether genetically regulated expression of non-conserved and conserved lincRNAs has similar rates of association with complex traits. Here we leveraged data from the Genotype-Tissue Expression (GTEx) project and multiple public genome-wide association study (GWAS) resources.

View Article and Find Full Text PDF

Introduction: High-fat diet (HFD)-induced obesity impairs clearance of cholesterol through the Reverse Cholesterol Transport (RCT) pathway, with downregulation in hepatic expression of cholesterol and bile acid transporters, namely ABCG5/8 and ABCB11, and reduced high-density lipoprotein (HDL) cholesterol efflux capacity (CEC). In the current study, we hypothesized that the development of hepatosteatosis, secondary to adipose-tissue dysfunction, contributes to obesity-impaired RCT and that such effects could be mitigated using the anti-inflammatory drug sodium salicylate (NaS).

Materials And Methods: C57BL/6J mice, fed HFD ± NaS or low-fat diet (LFD) for 24 weeks, underwent glucose and insulin tolerance testing.

View Article and Find Full Text PDF

Objective: Transcriptome profiling of human tissues has revealed thousands of long intergenic noncoding RNAs (lincRNAs) at loci identified through large-scale genome-wide studies for complex cardiometabolic traits. This raises the question of whether genetic variation at nonconserved lincRNAs has any systematic association with complex disease, and if so, how different this pattern is from conserved lincRNAs. We evaluated whether the associations between nonconserved lincRNAs and 8 complex cardiometabolic traits resemble or differ from the pattern of association for conserved lincRNAs.

View Article and Find Full Text PDF

Scope: High-fat diet (HFD)-induced obesity impairs macrophage-to-feces reverse cholesterol transport (RCT). It is hypothesized that dietary supplementation with the polyunsaturated fatty acids conjugated linoleic acid (CLA) or alpha linolenic acid (ALA) would prevent HFD-impaired RCT by modulating hepatic protein pathways.

Methods And Results: ApoE3L.

View Article and Find Full Text PDF

This review focuses on the human genetics, epidemiology, and molecular pathophysiology of sex differences in central obesity, adipose distribution, and related cardiometabolic disorders. Distribution of fat is important for cardiometabolic health, with peripheral fat depots having a protective effect and central visceral fat depots conferring a detrimental effect on health. There are important sex differences in fat distribution that are masked when studying body mass index as a measure of obesity.

View Article and Find Full Text PDF

Monocytes/macrophages drive progression and regression of atherosclerosis. Conjugated linoleic acid (CLA), an anti-inflammatory lipid, mediates atheroprotective effects. We investigated how CLA alters monocyte/macrophage phenotype during attenuated progression and regression of atherosclerosis.

View Article and Find Full Text PDF

We have shown that the glucagon-like peptide-1 receptor agonist (GLP-1RA) liraglutide (Lir) inhibits development of early atherosclerosis in vivo by modulating immune cell function. We hypothesized that Lir could attenuate pre-established disease by modulating monocyte or macrophage phenotype to induce atheroprotective responses. Human atherosclerotic plaques obtained postendarterectomy and human peripheral blood macrophages were treated ex vivo with Lir.

View Article and Find Full Text PDF

Background: Cholesterol retention within plasma membranes of macrophages is associated with increased inflammatory signaling. Cholesterol efflux via the transporters ABCA1, ABCG1, and SR-BI to high-density lipoprotein (HDL) particles is a critical mechanism to maintain cellular cholesterol homeostasis. Little is known about the impact of the obese microenvironment on cholesterol efflux capacity (CEC) of macrophages.

View Article and Find Full Text PDF

Background: Macrophages play a pivotal role in atherosclerotic plaque development. Recent evidence has suggested the glucagon-like peptide-1 receptor (GLP-1R) agonist, liraglutide, can attenuate pro-inflammatory responses in macrophages. We hypothesized that liraglutide could limit atherosclerosis progression in vivo via modulation of the inflammatory response.

View Article and Find Full Text PDF

Metabolic inflammation is a very topical area of research, wherein aberrations in metabolic and inflammatory pathways probably contribute to atherosclerosis, insulin resistance (IR) and type 2 diabetes. Metabolic insults arising from obesity promote inflammation, which in turn impedes insulin signalling and reverse cholesterol transport (RCT). Key cells in the process are metabolically activated macrophages, which up-regulate both pro- and anti-inflammatory pathways in response to lipid spillover from adipocytes.

View Article and Find Full Text PDF

Background: Acute inflammation impairs reverse cholesterol transport (RCT) and reduces high-density lipoprotein (HDL) function in vivo. This study hypothesized that obesity-induced inflammation impedes RCT and alters HDL composition, and investigated if dietary replacement of saturated (SFA) for monounsaturated (MUFA) fatty acids modulates RCT.

Methods And Results: Macrophage-to-feces RCT, HDL efflux capacity, and HDL proteomic profiling was determined in C57BL/6j mice following 24 weeks on SFA- or MUFA-enriched high-fat diets (HFDs) or low-fat diet.

View Article and Find Full Text PDF
Article Synopsis
  • High-fat diets rich in saturated fatty acids (SFA) lead to increased inflammation and insulin resistance in adipose tissue, primarily through interleukin-1β (IL-1β) pathways.
  • Replacing SFA with monounsaturated fatty acids (MUFA) improves insulin sensitivity and reduces pro-IL-1β levels, possibly due to AMPK activation which fosters healthier adipose tissue.
  • In contrast to SFA diets, MUFA diets may prevent insulin resistance and adipose dysfunction even in obese individuals, highlighting the potential benefits of dietary fat composition on metabolic health.
View Article and Find Full Text PDF