Publications by authors named "Marcella Grillo"

Preclinical methods are needed for screening potential Alzheimer's disease (AD) therapeutics that recapitulate phenotypes found in the Mild Cognitive Impairment (MCI) stage or even before this stage of the disease. This would require a phenotypic system that reproduces cognitive deficits without significant neuronal cell death to mimic the clinical manifestations of AD during these stages. Long-term potentiation (LTP), which is a correlate of learning and memory, was induced in mature human iPSC-derived cortical neurons cultured on microelectrode arrays utilizing circuit patterns connecting two adjacent electrodes.

View Article and Find Full Text PDF

Myelination and the formation of nodes of Ranvier are essential for the rapid conduction of nerve impulses along axons in the peripheral nervous system (PNS). While many animal-based and serum-containing models of peripheral myelination have been developed, these have limited ability when it comes to studying genetic disorders affecting peripheral myelination. We report a fully induced pluripotent stem cell (iPSC)-derived human model of peripheral myelination using Schwann cells (SCs) and motoneurons, cultured in a serum-free medium on patterned and nonpatterned surfaces.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the link between amyloid-β (Aβ) and cognitive decline in Alzheimer's disease (AD) by analyzing how Aβ affects cortical neuronal function and promotes cellular aging.
  • Researchers used human-derived cortical neurons to measure long-term potentiation (LTP) and found that Aβ reduced LTP and increased senescence, along with the release of inflammatory factors associated with AD.
  • The findings suggest a novel model for understanding AD pathology, indicating that while therapeutic molecules can improve neuronal function, they do not stop Aβ-induced aging, highlighting the need for better treatments.
View Article and Find Full Text PDF

Preclinical methods are needed for screening potential Alzheimer's disease (AD) therapeutics that recapitulate phenotypes found in the Mild Cognitive Impairment (MCI) stage or even before this stage of the disease. This would require a phenotypic system that reproduces cognitive deficits without significant neuronal cell death to mimic the clinical manifestations of AD during these stages. A potential functional parameter to be monitored is long-term potentiation (LTP), which is a correlate of learning and memory, that would be one of the first functions effected by AD onset.

View Article and Find Full Text PDF

In vitro culture longevity has long been a concern for disease modeling and drug testing when using contractable cells. The dynamic nature of certain cells, such as skeletal muscle, contributes to cell surface release, which limits the system's ability to conduct long-term studies. This study hypothesized that regulating the extracellular matrix (ECM) dynamics should be able to prolong cell attachment on a culture surface.

View Article and Find Full Text PDF

The control of severe or chronic pain has relied heavily on opioids and opioid abuse and addiction have recently become a major global health crisis. Therefore, it is imperative to develop new pain therapeutics which have comparable efficacy for pain suppression but lack of the harmful effects of opioids. Due to the nature of pain, any experiment is undesired even in animals.

View Article and Find Full Text PDF

DNA-based computers can potentially analyze complex sets of biological markers, thereby advancing diagnostics and the treatment of diseases. Despite extensive efforts, DNA processors have not yet been developed due, in part, to limitations in the ability to integrate available logic gates into circuits. We have designed a NAND gate, which is one of the functionally complete set of logic connectives.

View Article and Find Full Text PDF