Publications by authors named "Marcella Flinterman"

Endometrial cancer, the most common gynaecological cancer worldwide, is closely linked to obesity and metabolic diseases, particularly in younger women. New circulating biomarkers have the potential to improve diagnosis and treatment selections, which could significantly improve outcomes. Our approach focuses on extracellular vesicle (EV) biomarker discovery by directly profiling the proteome of EVs enriched from frozen biobanked endometrial tumours.

View Article and Find Full Text PDF

Cationic glycol phospholipids were synthesized introducing chromophoric, rigid polyenoic C20:5 and C30:9 chains next to saturated flexible alkyl chains of variable lengths C6-20:0. Surface properties and liposome formation of the amphiphilic compounds were determined, the properties of liposome/DNA complexes (lipoplexes) were established using three formulations (no co-lipid, DOPE as a co-lipid, or cholesterol as a co-lipid), and the microstructure of the best transfecting compounds inspected using small angle X-ray diffraction to explore details of the partially ordered structures of the systems that constitute the series. Transfection and cytotoxicity of the lipoplexes were evaluated by DNA delivery to Chinese hamster ovary (CHO-K1) cells using the cationic glycerol phospholipid 1,2-dioleoyl-sn-glycero-3-ethylphosphocholine (EPC) as a reference compound.

View Article and Find Full Text PDF

Duchenne Muscular Dystrophy (DMD) is a common, inherited, incurable, fatal muscle wasting disease caused by deletions that disrupt the reading frame of the DMD gene such that no functional dystrophin protein is produced. Antisense oligonucleotide (AO)-directed exon skipping restores the reading frame of the DMD gene, and truncated, yet functional dystrophin protein is expressed. The aim of this study was to assess the efficiency of two novel rigid, cationic carotenoid lipids, C30-20 and C20-20, in the delivery of a phosphorodiamidate morpholino (PMO) AO, specifically designed for the targeted skipping of exon 45 of DMD mRNA in normal human skeletal muscle primary cells (hSkMCs).

View Article and Find Full Text PDF

The trans-acting activator of transcription (TAT) protein transduction domain (PTD) mediates the transduction of peptides and proteins into target cells. The TAT-PTD has an important potential as a tool for the delivery of therapeutic agents. The production of TAT fusion proteins in bacteria, however, is problematic because of protein insolubility and the absence of eukaryotic post-translational modification.

View Article and Find Full Text PDF

A member of the p53 family, p73, has several isoforms and differentially regulates transcription of genes involved in the control of the cell cycle and apoptosis. We have previously shown efficient and p53-independent, tumor-specific cell death induced by the viral proteins E1A and Apoptin. Here, we demonstrate that the induction of apoptosis by these viral proteins involves activation of TAp73.

View Article and Find Full Text PDF

p73, a member of the p53 family of proteins, transcriptionally activates a number of genes involved in the control of cell cycle and apoptosis. Overexpression of p73 was detected in a large number of primary head and neck cancers, and in the established cell lines examined, these all contained inactivating p53 mutations. The significance of p73 overexpression in the pathogenesis of head and neck cancer is currently unclear.

View Article and Find Full Text PDF

Previous studies have shown early region 1A (E1A) gene to inhibit the proliferation of tumour cells with wild-type, but not mutant, p53. E1A has also been shown to downregulate c-erb-B-2/neu expression, resulting in inhibition of growth in c-erb-B-2/neu overexpressing tumour cells. In this study, we have investigated the effect of E1A expression on four head and neck squamous cell carcinoma (HNSCC) cell lines that do not overexpress c-erb-B-2/neu.

View Article and Find Full Text PDF