Publications by authors named "Marcell D Cadney"

Article Synopsis
  • Early-life experiences, particularly parental behaviors during critical development periods, can have significant long-term effects on offspring traits in mammals.
  • In an experiment with mice selectively bred for high running behavior, researchers investigated how maternal exercise affected maternal care and offspring physical activity and body composition.
  • Results showed that HR mice (high runners) exhibited less maternal care when exercising compared to non-selected CON dams, with implications for offspring health and development.
View Article and Find Full Text PDF

Selective breeding has been utilized to study the genetic basis of exercise behavior, but research suggests that epigenetic mechanisms, such as DNA methylation, also contribute to this behavior. In a previous study, we demonstrated that the brains of mice from a genetically selected high runner (HR) line have sex-specific changes in DNA methylation patterns in genes known to be genomically imprinted compared to those from a non-selected control (C) line. Through cross-fostering, we also found that maternal upbringing can modify the DNA methylation patterns of additional genes.

View Article and Find Full Text PDF

We compared the fecal microbial community composition and diversity of four replicate lines of mice selectively bred for high wheel-running activity over 81 generations (HR lines) and four non-selected control lines. We performed 16S rRNA gene sequencing on fecal samples taken 24 h after weaning, identifying a total of 2074 bacterial operational taxonomic units. HR and control mice did not significantly differ for measures of alpha diversity, but HR mice had a higher relative abundance of the family Clostridiaceae.

View Article and Find Full Text PDF

Fructose (CHO) is acutely obesogenic and is a risk factor for hypertension, cardiovascular disease, and nonalcoholic fatty liver disease. However, the possible long-lasting effects of early-life fructose consumption have not been studied. We tested for effects of early-life fructose and/or wheel access (voluntary exercise) in a line of selectively bred High Runner (HR) mice and a non-selected Control (C) line.

View Article and Find Full Text PDF

We have previously shown that high runner (HR) mice (from a line genetically selected for increased wheel-running behavior) have distinct, genetically based, neurobiological phenotypes as compared with non-selected control (C) mice. However, developmental programming effects during early life, including maternal care and parent-of-origin-dependent expression of imprinted genes, can also contribute to variation in physical activity. Here, we used cross-fostering to address two questions.

View Article and Find Full Text PDF

The gut microbiome can affect various aspects of both behavior and physiology, including exercise ability, but effects on voluntary exercise have rarely been studied. We studied females from a selection experiment in which 4 replicate High Runner (HR) lines of mice are bred for voluntary exercise and compared with 4 non-selected control (C) lines. HR and C mice differ in several traits that likely interact with the gut microbiome, including higher daily running distance, body temperatures when running, spontaneous physical activity when housed without wheels, and food consumption.

View Article and Find Full Text PDF

While nursing, mammals progress through critical developmental periods for the cardiovascular, musculoskeletal, and central nervous systems. The suckling period in mammals is therefore especially vulnerable to environmental factors that may affect the "developmental programming" of many complex traits. As a result, various aspects of maternal behavior and physiology can influence offspring in ways that have lasting effects into adulthood.

View Article and Find Full Text PDF

Exercise behavior is under partial genetic control, but it is also affected by numerous environmental factors, potentially including early-life experiences whose effects persist into adulthood. We studied genetic and early-life environmental effects on wheel-running behavior in a mouse model that includes four replicate high runner (HR) lines selectively bred for increased voluntary wheel running as young adults and four non-selected control (C) lines. In a full factorial design, mice from each line were granted wheel access or not and administered either standard or Western diet (WD) from weaning (3 weeks old) to 6 weeks of age (sexual maturity).

View Article and Find Full Text PDF

Alterations to the gut microbiome caused by changes in diet, consumption of antibiotics, etc., can affect host function. Moreover, perturbation of the microbiome during critical developmental periods potentially has long-lasting impacts on hosts.

View Article and Find Full Text PDF

Behavioral addictions can come in many forms, including overeating, gambling and overexercising. All addictions share a common mechanism involving activation of the natural reward circuit and reinforcement learning, but the extent to which motivation for natural and drug rewards share similar neurogenetic mechanisms remains unknown. A unique mouse genetic model in which four replicate lines of female mice were selectively bred (>76 generations) for high voluntary wheel running (High Runner or HR lines) alongside four non-selected control (C) lines were used to test the hypothesis that high motivation for exercise is associated with greater reward for cocaine (20 mg/kg) and methylphenidate (10 mg/kg) using the conditioned place preference (CPP) test.

View Article and Find Full Text PDF

Locomotion is a defining characteristic of animal life and plays a crucial role in most behaviors. Locomotion involves physical activity, which can have far-reaching effects on physiology and neurobiology, both acutely and chronically. In human populations and in laboratory rodents, higher levels of physical activity are generally associated with positive health outcomes, although excessive exercise can have adverse consequences.

View Article and Find Full Text PDF