Membrane computing is a natural computing procedure inspired in the compartmental structure of living cells. This approach allows mimicking the complex structure of biological processes, and, when applied to transmissible diseases, can simulate a virtual 'epidemic' based on interactions between elements within the computational model according to established conditions. General and focused vaccination strategies for controlling SARS-Cov-2 epidemics have been simulated for 2.
View Article and Find Full Text PDFBacterial plasmids harboring antibiotic resistance genes are critical in the spread of antibiotic resistance. It is known that plasmids differ in their kinetic values, i.e.
View Article and Find Full Text PDFMembrane computing is a bio-inspired computing paradigm whose devices are the so-called membrane systems or P systems. The P system designed in this work reproduces complex biological landscapes in the computer world. It uses nested "membrane-surrounded entities" able to divide, propagate, and die; to be transferred into other membranes; to exchange informative material according to flexible rules; and to mutate and be selected by external agents.
View Article and Find Full Text PDFBackground: Antibiotic resistance is a major biomedical problem upon which public health systems demand solutions to construe the dynamics and epidemiological risk of resistant bacteria in anthropogenically-altered environments. The implementation of computable models with reciprocity within and between levels of biological organization (i.e.
View Article and Find Full Text PDFBMC Bioinformatics
September 2008
Background: Due to their role of receptors or transporters, membrane proteins play a key role in many important biological functions. In our work we used Grammatical Inference (GI) to localize transmembrane segments. Our GI process is based specifically on the inference of Even Linear Languages.
View Article and Find Full Text PDF