Understanding the mechanisms of assembly and disassembly of macromolecular structures in cells relies on solving biomolecular interactions. However, those interactions often remain unclear because tools to track molecular dynamics are not sufficiently resolved in time or space. In this study, we present a straightforward method for resolving inter- and intra-molecular interactions in cell adhesive machinery, using quantum dot (QD) based Förster resonance energy transfer (FRET) nanosensors.
View Article and Find Full Text PDFFocal adhesions are composed of transmembrane integrins, linking the extracellular matrix to the actomyosin cytoskeleton, via cytoplasmic proteins. Adhesion depends on the activation of integrins. Talin and kindlin proteins are intracellular activators of integrins that bind to β-integrin cytoplasmic tails.
View Article and Find Full Text PDFThe necessity to scrutinize more and more biological molecules and interactions both in solution and on the cellular level has led to an increasing demand for sensitive and specific multiplexed diagnostic analysis. Photoluminescence (PL) detection is ideally suited for multiplexed biosensing and bioimaging because it is rapid and sensitive and there is an almost unlimited choice of fluorophores that provide a large versatility of photophysical properties, including PL intensities, spectra, and lifetimes.The most frequently used technique to detect multiple parameters from a single sample is spectral (or color) multiplexing with different fluorophores, such as organic dyes, fluorescent proteins, quantum dots, or lanthanide nanoparticles and complexes.
View Article and Find Full Text PDFFluorescence signal enhancement isothermal nucleic acid amplification is an important approach for sensitive imaging of intra- or extracellular nucleic acid or protein biomarkers. Rolling circle amplification (RCA) is frequently applied for fluorescence imaging but faces limitations concerning multiplexing, dynamic range, and the required multiple washing steps before imaging. Here, we show that Förster resonance energy transfer (FRET) between fluorescent dyes and between lanthanide (Ln) complexes and dyes that hybridize to β-actin-specific RCA products in HaCaT cells can afford washing-free imaging of single β-actin proteins.
View Article and Find Full Text PDFThe zebrafish is an important vertebrate model for disease, drug discovery, toxicity, embryogenesis, and neuroscience. In vivo fluorescence microscopy can reveal cellular and subcellular details down to the molecular level with fluorescent proteins (FPs) currently the main tool for zebrafish imaging. However, long maturation times, low brightness, photobleaching, broad emission spectra, and sample autofluorescence are disadvantages that cannot be easily overcome by FPs.
View Article and Find Full Text PDFLanthanide-doped nanoparticles (LnNPs) have become an important class of fluorophores for advanced biosensing and bioimaging. LnNPs that are photosensitized by surface-attached antenna ligands can possess exceptional brightness. However, their functional bioconjugation remains an important challenge for their translation into bioanalytical applications.
View Article and Find Full Text PDFWe propose a calibration routine useful to evaluate the incident angle in total internal reflection fluorescence (TIRF) microscopy. This procedure is based on critical angle measurements conducted in the back focal plane (BFP) of the objective. Such BFP imaging can be easily implemented on any TIRF setup, making this technique very attractive.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
October 2018
Fluorescence barcoding based on nanoparticles provides many advantages for multiparameter imaging. However, creating different concentration-independent codes without mixing various nanoparticles and by using single-wavelength excitation and emission for multiplexed cellular imaging is extremely challenging. Herein, we report the development of quantum dots (QDs) with two different SiO shell thicknesses (6 and 12 nm) that are coated with two different lanthanide complexes (Tb and Eu).
View Article and Find Full Text PDFWe propose an improved version of variable-angle total internal reflection fluorescence microscopy (vaTIRFM) adapted to modern TIRF setup. This technique involves the recording of a stack of TIRF images, by gradually increasing the incident angle of the light beam on the sample. A comprehensive theory was developed to extract the membrane/substrate separation distance from fluorescently labeled cell membranes.
View Article and Find Full Text PDFTime-gated Förster resonance energy transfer (FRET) using the unique material combination of long-lifetime terbium complexes (Tb) and semiconductor quantum dots (QDs) provides many advantages for highly sensitive and multiplexed biosensing. Although time-gated detection can efficiently suppress sample autofluorescence and background fluorescence from directly excited FRET acceptors, Tb-to-QD FRET has rarely been exploited for biomolecular imaging. We demonstrate Tb-to-QD time-gated FRET nanoassemblies that can be applied for intra- and extracellular imaging.
View Article and Find Full Text PDFWe recently proposed a straightforward fluorescence microscopy technique to study adhesion of Giant Unilamellar Vesicles. This technique is based on dual observations which combine epi-fluorescence microscopy and total internal reflection fluorescence (TIRF) microscopy: TIRF images are normalized by epi-fluorescence ones. By this way, it is possible to map the membrane/substrate separation distance with a nanometric resolution, typically ~20 nm, with a maximal working range of 300-400 nm.
View Article and Find Full Text PDFRationale: Pulmonary hypertension (PH) is characterized by a progressive elevation in mean pulmonary arterial pressure, often leading to right ventricular failure and death. Growth factors play significant roles in the pathogenesis of PH, and their targeting may therefore offer novel therapeutic strategies in this disease.
Objectives: To evaluate the nerve growth factor (NGF) as a potential new target in PH.
We present a simple modification of a standard total internal reflection fluorescence microscope to achieve nanometric axial resolution, typically ≈10 nm. The technique is based on a normalization of total internal reflection images by conventional epi-illumination images. We demonstrate the potential of our method to study the adhesion of phopholipid giant unilamellar vesicles.
View Article and Find Full Text PDF