Publications by authors named "Marcele P Martins"

Article Synopsis
  • - Members of the Bacteroidota phylum in the gut microbiota are crucial for mammalian health and metabolism, and they utilize complex dietary glycans effectively through specialized genes known as polysaccharide utilization loci (PULs).
  • - Research shows that a PUL from a gut bacterium in herbivores, which shares similarities with a human gut PUL, has developed enhanced capabilities, allowing it to process a wider variety of β-glucans, including those that are linear and substituted.
  • - The study highlights molecular changes in recognition proteins and enzymes that help these bacteria adapt, revealing deeper functional and evolutionary complexity within gut microbiota related to the digestion of non-cellulosic β-glucans.
View Article and Find Full Text PDF

Glycoside hydrolase family 5 (GH5) harbors diverse substrate specificities and modes of action, exhibiting notable molecular adaptations to cope with the stereochemical complexity imposed by glycosides and carbohydrates such as cellulose, xyloglucan, mixed-linkage β-glucan, laminarin, (hetero)xylan, (hetero)mannan, galactan, chitosan, N-glycan, rutin and hesperidin. GH5 has been divided into subfamilies, many with higher functional specificity, several of which have not been characterized to date and some that have yet to be discovered with the exploration of sequence/taxonomic diversity. In this work, the current GH5 subfamily inventory is expanded with the discovery of the GH5_57 subfamily by describing an endo-β-mannanase (CapGH5_57) from an uncultured Bacteroidales bacterium recovered from the capybara gut microbiota.

View Article and Find Full Text PDF

The largest living rodent, capybara, can efficiently depolymerize and utilize lignocellulosic biomass through microbial symbiotic mechanisms yet elusive. Herein, we elucidate the microbial community composition, enzymatic systems and metabolic pathways involved in the conversion of dietary fibers into short-chain fatty acids, a main energy source for the host. In this microbiota, the unconventional enzymatic machinery from Fibrobacteres seems to drive cellulose degradation, whereas a diverse set of carbohydrate-active enzymes from Bacteroidetes, organized in polysaccharide utilization loci, are accounted to tackle complex hemicelluloses typically found in gramineous and aquatic plants.

View Article and Find Full Text PDF

The fundamental and assorted roles of β-1,3-glucans in nature are underpinned on diverse chemistry and molecular structures, demanding sophisticated and intricate enzymatic systems for their processing. In this work, the selectivity and modes of action of a glycoside hydrolase family active on β-1,3-glucans were systematically investigated combining sequence similarity network, phylogeny, X-ray crystallography, enzyme kinetics, mutagenesis and molecular dynamics. This family exhibits a minimalist and versatile (α/β)-barrel scaffold, which can harbor distinguishing exo or endo modes of action, including an ancillary-binding site for the anchoring of triple-helical β-1,3-glucans.

View Article and Find Full Text PDF