Publications by authors named "Marcela d'Alincourt Salazar"

Leflunomide (Lef) is an agent used in autoimmune disorders that interferes with DNA synthesis. pyrimidine synthesis is a mechanism of Gemcitabine (Gem) resistance in pancreatic cancer. This study aims to assess the efficacy and changes in the tumor microenvironment of Lef monotherapy and in combination with Gem, in a syngeneic mouse model of pancreatic cancer.

View Article and Find Full Text PDF

Modified Vaccinia Ankara (MVA) is a highly attenuated poxvirus vector that is widely used to develop vaccines for infectious diseases and cancer. We demonstrate the construction of a vaccine platform based on a unique three-plasmid system to efficiently generate recombinant MVA vectors from chemically synthesized DNA. In response to the ongoing global pandemic caused by SARS coronavirus-2 (SARS-CoV-2), we use this vaccine platform to rapidly produce fully synthetic MVA (sMVA) vectors co-expressing SARS-CoV-2 spike and nucleocapsid antigens, two immunodominant antigens implicated in protective immunity.

View Article and Find Full Text PDF

Modified Vaccinia Ankara (MVA) is a highly attenuated poxvirus vector that is widely used to develop vaccines for infectious diseases and cancer. We developed a novel vaccine platform based on a unique three-plasmid system to efficiently generate recombinant MVA vectors from chemically synthesized DNA. In response to the ongoing global pandemic caused by SARS coronavirus-2 (SARS-CoV-2), we used this novel vaccine platform to rapidly produce fully synthetic MVA (sMVA) vectors co-expressing SARS-CoV-2 spike and nucleocapsid antigens, two immunodominant antigens implicated in protective immunity.

View Article and Find Full Text PDF

Modified Vaccinia Ankara (MVA) is a highly attenuated poxvirus vector that is widely used to develop vaccines for infectious diseases and cancer. We developed a novel vaccine platform based on a unique three-plasmid system to efficiently generate recombinant MVA vectors from chemically synthesized DNA. In response to the ongoing global pandemic caused by SARS coronavirus-2 (SARS-CoV-2), we used this novel vaccine platform to rapidly produce fully synthetic MVA (sMVA) vectors co-expressing SARS-CoV-2 spike and nucleocapsid antigens, two immunodominant antigens implicated in protective immunity.

View Article and Find Full Text PDF

Background: Polymorphisms in MTHFR gene influence risk and overall survival of patients with brain tumor. Global genomic DNA (gDNA) methylation profile from tumor tissues is replicated in peripheral leukocytes. This study aimed to draw a correlation between rs1801133 MTHFR variants, gDNA methylation and overall survival of patients with recurrent glioblastoma (rGBM) under perillyl alcohol (POH) treatment.

View Article and Find Full Text PDF

The five-year survival rate of patients diagnosed with advanced pancreatic ductal adenocarcinoma (PDAC) has remained static at <5% despite decades of research. With the exception of erlotinib, clinical trials have failed to demonstrate the benefit of any targeted therapy for PDAC despite promising results in preclinical animal studies. The development of more refined mouse models of PDAC which recapitulate the carcinogenic progression from non-neoplastic, adult exocrine subsets of pancreatic cells to invasive carcinoma in humans are needed to facilitate the accurate translation of therapies to the clinic.

View Article and Find Full Text PDF

It has been hypothesized that persistent ketotic hypoglycemia represents a potential therapeutic strategy against high-grade gliomas. Perillyl alcohol (POH) is a non-toxic, naturally-occurring, hydroxylated monoterpene that exhibits cytotoxicity against temozolomide-resistant glioma cells, regardless of O6-methylguanine-methyltransferase promoter methylation status. The present study aimed to evaluate the toxicity and therapeutic efficacy of intranasal POH when administered in combination with a ketogenic diet (KD) program for the treatment of patients with recurrent glioblastoma.

View Article and Find Full Text PDF

Monoterpenes such as limonene and perillyl alcohol (POH) are promising natural compounds with pro-oxidant properties partly due to endoplasmic reticulum (ER) stress-induced cytotoxicity, and antioxidant activity owing to their activity as free radical scavengers, inhibition of coenzyme Q synthesis, activation of antioxidant-responsive elements (inducing detoxification enzymes) and induction of apoptosis. Activation of ER-stress responses generates reactive oxygen species (ROS), which are highly reactive free radicals mainly produced during mitochondrial electron transfer for adenosine triphosphate (ATP) synthesis. When cells are subjected to oxidative stress conditions, there is an accumulation of ROS that can lead to irreversible cell injury caused primarily by lipid peroxidation, protein aggregation and/or DNA damage.

View Article and Find Full Text PDF

Despite the clinical success of anti-PD1 antibody (α-PD1) therapy, the immune mechanisms contributing to the antineoplastic response remain unclear. Here, we describe novel aspects of the immune response involved in α-PD1-induced antitumor effects using an orthotopic Kras (G12D)/p53(R172H)/Pdx1-Cre (KPC) model of pancreatic ductal adenocarcinoma (PDA). We found that positive therapeutic outcome involved both the innate and adaptive arms of the immune system.

View Article and Find Full Text PDF

Background: Gliomas display a high degree of intratumor heterogeneity, including changes in physiological parameters and lipid composition of the plasma membrane, which may contribute to the development of drug resistance. Biophysical interactions between therapeutic agents and the lipid components at the outer plasma membrane interface are critical for effective drug uptake. Amphipathic molecules such as perillyl alcohol (POH) have a high partition coefficient and generally lead to altered lipid acyl tail dynamics near the lipid-water interface, impacting the lipid bilayer structure and transport dynamics.

View Article and Find Full Text PDF

Estrogen (E2) supports breast cancer cell growth but suppresses invasiveness and both actions are antagonized by anti-estrogens. As a consequence, anti-estrogen treatment may increase the invasive potential of estrogen receptor (ER)+ tumor cell sub-populations that are endocrine resistant due to HER2 amplification. Either transactivation or transrepression by E2/ER could lead to both up- and down-regulation of many genes.

View Article and Find Full Text PDF

Perillyl alcohol (POH) presents antitumoral activity but clinical application is hampered by adverse effects following oral administration. This work aimed to verify the cytotoxic effect of intranasal POH administration in the histology of lung, liver, brain; the cellularity and function of peripheral and bronchoalveolar-associated immune system. C57 adult mice received 1-min inhalation with POH, vehicle 70 % ethanol or saline buffer, once (84 μg/day) or twice (164 μg/day) during five consecutive days, and were killed 72 h after treatment.

View Article and Find Full Text PDF

A need for androgen response elements (AREs) for androgen receptor (AR)-dependent growth of hormone depletion-insensitive prostate cancer is generally presumed. In such cells, androgen-independent activation by AR of certain genes has been attributed to selective increases in basal associations of AR with putative enhancers. We examined the importance of AR binding to DNA in prostate cancer cells in which proliferation in the absence of hormone was profoundly (∼ 90%) dependent on endogenous AR and where the receptor was not up-regulated or mutated but was predominantly nuclear.

View Article and Find Full Text PDF

The glycosyl-phosphatidylinositol anchored folate receptor (FR) mediates selective delivery of a broad range of experimental drugs to the receptor-rich tumors, but molecular mechanisms controlling FR internalization have not been adequately studied. FR quantitatively recycles between the cell surface and endocytic compartments via a Cdc42-dependent pinocytic pathway. Protein kinase C (PKC) activators including diacylglycerol and phorbol ester have previously been reported to increase the proportion of FR on the cell surface.

View Article and Find Full Text PDF

For over a decade the folate receptor has been intensively investigated as a means for tumor-specific delivery of a broad range of experimental therapies including several conceptually new treatments. Despite a few set backs in clinical trials, the literature is replete with encouraging in vitro and pre-clinical studies of gynecological and other tumors and more therapeutic approaches are ready for clinical testing. Recent studies have added myelogenous leukemias to the list of candidate cancers for FR-targeted therapies.

View Article and Find Full Text PDF