Plants (Basel)
November 2022
Inhibition of systemic inflammation has been a beneficial strategy in treating several non-communicable diseases, which represent one of the major causes of mortality in the world. The Peroxisome Proliferator-Activated Receptors (PPAR) are interesting pharmacological targets, since they can act both through the metabolic and anti-inflammatory pathways. L.
View Article and Find Full Text PDFβ-Galactosidases are widely used for industrial applications. These enzymes could be used in reactions of lactose hydrolysis and transgalactosylation. The objective of this study was the production, purification, and characterization of an extracellular β-galactosidase from a filamentous fungus, Aspergillus niger.
View Article and Find Full Text PDFL-asparaginase is an enzyme produced by microorganisms, plants, and animals, which is used clinically for the treatment for acute lymphoblastic leukemia (ALL) and, in the food industry, to control acrylamide formation in baked foods. The purpose of this review was to evaluate the available literature regarding microbial sources of L-asparaginase, culture media used to achieve maximum enzyme expression in microbial fermentations, and assay methods employed to assess L-asparaginase activity. Studies were gathered by searching PubMed, and Web of Science databases before January 22, 2018, with no time restrictions.
View Article and Find Full Text PDFEnzymatic hydrolysis is an important but expensive step in the process to obtain enzyme derived products. Thus, the production of efficient enzymes is of great interest for this biotechnological application. The production of xylanase by in soybean residues was optimized using 2 × 2 factorial designs.
View Article and Find Full Text PDFThe purpose of this systematic review was to identify the available literature of the l-asparaginase producing fungi. This study followed the Preferred Reporting Items for Systematic Reviews. The search was conducted on five databases: LILACS, PubMed, Science Direct, Scopus and Web of Science up until July 20th, 2016, with no time or language restrictions.
View Article and Find Full Text PDFMelanogenesis is a process responsible for melanin production, which is stored in melanocytes containing tyrosinase. Inhibition of this enzyme is a target in the cosmetics industry, since it controls undesirable skin conditions such as hyperpigmentation due to the overproduction of melanin. Species of the Morus genus are known for the beneficial uses offered in different parts of its plants, including tyrosinase inhibition.
View Article and Find Full Text PDF