Publications by authors named "Marcela M Soruco"

Heterogametic species require chromosome-wide gene regulation to compensate for differences in sex chromosome gene dosage. In Drosophila melanogaster, transcriptional output from the single male X-chromosome is equalized to that of XX females by recruitment of the male-specific lethal (MSL) complex, which increases transcript levels of active genes 2-fold. The MSL complex contains several protein components and two non-coding RNA on the X ( roX) RNAs that are transcriptionally activated by the MSL complex.

View Article and Find Full Text PDF

Dosage compensation adjusts the expression levels of genes on one or both targeted sex chromosomes in heterogametic species. This process results in the normalized transcriptional output of important and essential gene families encoded on multiple chromosomes. The mechanisms of dosage compensation have been studied in many model organisms, including Drosophila melanogaster (fly), Caenorhabditis elegans (worm), and Mus musculus (mouse).

View Article and Find Full Text PDF

The Drosophila male-specific lethal (MSL) dosage compensation complex increases transcript levels on the single male X chromosome to equal the transcript levels in XX females. However, it is not known how the MSL complex is linked to its DNA recognition elements, the critical first step in dosage compensation. Here, we demonstrate that a previously uncharacterized zinc finger protein, CLAMP (chromatin-linked adaptor for MSL proteins), functions as the first link between the MSL complex and the X chromosome.

View Article and Find Full Text PDF

Sex chromosome dosage compensation in Drosophila provides a model for understanding how chromatin organization can modulate coordinate gene regulation. Male Drosophila increase the transcript levels of genes on the single male X approximately two-fold to equal the gene expression in females, which have two X-chromosomes. Dosage compensation is mediated by the Male-Specific Lethal (MSL) histone acetyltransferase complex.

View Article and Find Full Text PDF