Publications by authors named "Marcela I Cespedes"

The degeneration of the human brain is a complex process, which often affects certain brain regions due to healthy aging or disease. This degeneration can be evaluated on regions of interest (ROI) in the brain through probabilistic networks and morphological estimates. Current approaches for finding such networks are limited to analyses at discrete neuropsychological stages, which cannot appropriately account for connectivity dynamics over the onset of cognitive deterioration, and morphological changes are seldom unified with connectivity networks, despite known dependencies.

View Article and Find Full Text PDF

Diffusion MRI tractography is commonly used to delineate white matter tracts. These delineations can be used for planning neurosurgery or for identifying regions of interest from which microstructural measurements can be taken. Probabilistic tractography produces different delineations each time it is run, potentially leading to microstructural measurements or anatomical delineations that are not reproducible.

View Article and Find Full Text PDF

Often derived from partial correlations or many pairwise analyses, covariance networks represent the inter-relationships among regions and can reveal important topological structures in brain measures from healthy and pathological subjects. However both approaches are not consistent network estimators and are sensitive to the value of the tuning parameters. Here, we propose a consistent covariance network estimator by maximising the network likelihood (MNL) which is robust to the tuning parameter.

View Article and Find Full Text PDF

Objectives: In recent years, large-scale longitudinal neuroimaging studies have improved our understanding of healthy ageing and pathologies including Alzheimer's disease (AD). A particular focus of these studies is group differences and identification of participants at risk of deteriorating to a worse diagnosis. For this, statistical analysis using linear mixed-effects (LME) models are used to account for correlated observations from individuals measured over time.

View Article and Find Full Text PDF