Publications by authors named "Marcela Gonzalez-Granillo"

Male and female offspring of obese mothers are known to differ extensively in their metabolic adaptation and later development of complications. We investigate the sex-dependent responses in obese offspring mice with maternal obesity, focusing on changes in liver glucose and lipid metabolism. Here we show that maternal obesity prior to and during gestation leads to hepatic steatosis and inflammation in male offspring, while female offspring are protected.

View Article and Find Full Text PDF

Objective: The prevalence of overweight and obesity among children has drastically increased during the last decades and maternal obesity has been demonstrated as one of the ultimate factors. Nutrition-stimulated transgenerational regulation of key metabolic genes is fundamental to the developmental origins of the metabolic syndrome. Fetal nutrition may differently influence female and male offspring.

View Article and Find Full Text PDF

With the increasing prevalence of obesity in women of reproductive age, there is an urgent need to understand the metabolic impact on the fetus. Sex-related susceptibility to liver diseases has been demonstrated but the underlying mechanism remains unclear. Here we report that maternal obesity impacts lipid metabolism differently in female and male offspring.

View Article and Find Full Text PDF

Estrogen exerts its action through the binding to two major receptors, estrogen receptor (ER)α and β. Recently, the beneficial role of selective ERβ activation in the regulation of metabolic homeostasis in obesity has been demonstrated, but its importance is still controversial. However, no data are available regarding possible gender differences in response to pharmaceutical activation of ERβ.

View Article and Find Full Text PDF

The response to overfeeding is sex dependent, and metabolic syndrome is more likely associated to obesity in men or postmenopausal women than in young fertile women. We hypothesized that obesity-induced metabolic syndrome is sex dependent due to a sex-specific regulation of the fatty acid (FA) synthesis pathways in liver and white adipose depots. We aimed to identify distinctive molecular signatures between sexes using a lipidomics approach to characterize lipid species in liver, perigonadal adipose tissue, and inguinal adipose tissue and correlate them to the physiopathological responses observed.

View Article and Find Full Text PDF

Objective: Estrogens play a key role in the distribution of adipose tissue and have their action by binding to both estrogen receptors (ER), α and β. Although ERβ has a role in the energy metabolism, limited data of the physiological mechanism and metabolic response involved in the pharmacological activation of ERβ is available.

Methods: For clinical relevance, non-ovariectomized female mice were subjected to high fat diet together with pharmacological (DIP - 4-(2-(3,5-dimethylisoxazol-4-yl)-1H-indol-3-yl)phenol) interventions to ERβ selective activation.

View Article and Find Full Text PDF

Mitochondria are dynamic structures for which fusion and fission are well characterized for rapidly dividing cells in culture. Based on these data, it has recently been proposed that high respiratory activity is the result of fusion and formation of mitochondrial reticulum, while fission results in fragmented mitochondria with low respiratory activity. In this work we test the validity of this new hypothesis by analyzing our own experimental data obtained in studies of isolated heart mitochondria, permeabilized cells of cardiac phenotype with different mitochondrial arrangement and dynamics.

View Article and Find Full Text PDF

This review describes the recent experimental data on the importance of the VDAC-cytoskeleton interactions in determining the mechanisms of energy and metabolite transfer between mitochondria and cytoplasm in cardiac cells. In the intermembrane space mitochondrial creatine kinase connects VDAC with adenine nucleotide translocase and ATP synthase complex, on the cytoplasmic side VDAC is linked to cytoskeletal proteins. Applying immunofluorescent imaging and Western blot analysis we have shown that β2-tubulin coexpressed with mitochondria is highly important for cardiac muscle cells mitochondrial metabolism.

View Article and Find Full Text PDF

The aim of this study was to investigate the possible role of tubulin βII, a cytoskeletal protein, in regulation of mitochondrial oxidative phosphorylation and energy fluxes in heart cells. This isotype of tubulin is closely associated with mitochondria and co-expressed with mitochondrial creatine kinase (MtCK). It can be rapidly removed by mild proteolytic treatment of permeabilized cardiomyocytes in the absence of stimulatory effect of cytochrome c, that demonstrating the intactness of the outer mitochondrial membrane.

View Article and Find Full Text PDF

This review describes developments in historical perspective as well as recent results of investigations of cellular mechanisms of regulation of energy fluxes and mitochondrial respiration by cardiac work - the metabolic aspect of the Frank-Starling law of the heart. A Systems Biology solution to this problem needs the integration of physiological and biochemical mechanisms that take into account intracellular interactions of mitochondria with other cellular systems, in particular with cytoskeleton components. Recent data show that different tubulin isotypes are involved in the regular arrangement exhibited by mitochondria and ATP-consuming systems into Intracellular Energetic Units (ICEUs).

View Article and Find Full Text PDF

Mitochondria-cytoskeleton interactions were analyzed in adult rat cardiomyocytes and in cancerous non-beating HL-1 cells of cardiac phenotype. We show that in adult cardiomyocytes βII-tubulin is associated with mitochondrial outer membrane (MOM). βI-tubulin demonstrates diffused intracellular distribution, βIII-tubulin is colocalized with Z-lines and βIV-tubulin forms microtubular network.

View Article and Find Full Text PDF

Obesity is frequently associated with the consumption of high carbohydrate/fat diets leading to hyperinsulinemia. We have demonstrated that soy protein (SP) reduces hyperinsulinemia, but it is unclear by which mechanism. Thus, the purpose of the present work was to establish whether SP stimulates insulin secretion to a lower extent and/or reduces insulin resistance, and to understand its molecular mechanism of action in pancreatic islets of rats with diet-induced obesity.

View Article and Find Full Text PDF