We report two novel genosensors for the quantification of SARS-CoV-2 nucleic acid using glassy carbon electrodes modified with a biocapture nanoplatform made of multi-walled carbon nanotubes (MWCNTs) non-covalently functionalized with avidin (Av) as a support of the biotinylated-DNA probes. One of the genosensors was based on impedimetric transduction offering a non-labelled and non-amplified detection of SARS-CoV-2 nucleic acid through the increment of [Fe(CN)] charge transfer resistance. This biosensor presented an excellent analytical performance, with a linear range of 1.
View Article and Find Full Text PDFMicroRNAs (miRNAs) are non-coding regulatory RNAs that play an important role in RNA silencing and post-transcriptional gene expression regulation. Since their dysregulation has been associated with Alzheimer disease, cardiovascular diseases and different types of cancer, among others, miRNAs can be used as biomarkers for early diagnosis and prognosis of these diseases. The methods commonly used to quantify miRNAs are, in general, complex, costly, with limited application for point-of-care devices or resource-limited facilities.
View Article and Find Full Text PDFThe growing interest in the chemistry of unsaturated ring-fused 1,3-heterocycles, in this particular case 1,3-oxazines, arise in part from their versatile pharmacological applications. In the present article, the evaluation of the in vitro and ex vivo antioxidant activity of two cyclohexene-fused oxazines is discussed. The in vitro antioxidant activity was evaluated by trapping the ABTS and hydroxyl radicals as well as the inhibition of the enzyme acetyl-cholinesterase and hemolysis of erythrocytes by 2,2'-Azobis(2-amidinopropane) dihydrochloride (AAPH).
View Article and Find Full Text PDFThis work reports the characterization of a modified gold surface as a platform for the development of a label free aptasensor for thrombin detection. The biorecognition platform was obtained by the self-assembly of 4-mercaptobenzoic acid onto a gold surface, covalent attachment of streptavidin and further immobilization of the biotinylated anti-thrombin aptamer. The biosensing platform was characterized by cyclic voltammetry, electrochemical impedance spectroscopy, surface plasmon resonance (SPR) and quartz crystal microbalance with dissipation monitoring.
View Article and Find Full Text PDFThis work reports on the performance of carbon nanotube modified screen-printed electrodes (SPE-MWCNT) for the selective determination of dopamine (DA) in the presence of ascorbic acid (AA) by adsorptive stripping voltammetry (AdSV). Several operating conditions and parameters were examined including the electrochemical pre-treatment and the previous AA interaction and DA accumulation in the presence AA at physiological conditions. Under the chosen conditions, DA peak current of differential pulse voltammograms increases linearly with DA concentration in the range of 5.
View Article and Find Full Text PDFWe report the highly selective and sensitive voltammetric dopamine quantification in the presence of ascorbic acid and serotonin by using glassy carbon electrodes modified with a dispersion of multi-wall carbon nanotubes (MWCNT) in polyethylenimine, PEI (GCE/MWCNT-PEI). The electrocatalytic activity of the MWCNT deposited on the glassy carbon electrode has allowed an important decrease in the overvoltages for the oxidation of ascorbic acid and dopamine, making possible a clear definition of dopamine, serotonin and ascorbic acid oxidation processes. The sensitivities for dopamine in the presence and absence of 1.
View Article and Find Full Text PDFThis work reports the advantages of a label free electrochemical aptasensor for the detection of lysozyme. The biorecognition platform was obtained by the adsorption of the aptamer on the surface of a carbon paste electrode (CPE) previously blocked with mouse immunoglobulin under controlled-potential conditions. The recognition event was detected from the decrease in the guanine and adenine electro-oxidation signals produced as a consequence of the molecular interaction between the aptamer and lysozyme.
View Article and Find Full Text PDFIn this work, we demonstrate for the first time that 4-methyl-5-nitrocatechol (4M5NC) and 2,4,5-trihydroxytoluene (2,4,5-THT), two compounds obtained from the 2,4-DNT biodegradation are recognized by polyphenol oxidase as substrates. An amperometric biosensor is described for detecting these compounds and for evaluating the efficiency of the 2,4-DNT conversion into 4M5NC in the presence of bacteria able to produce the 2,4-DNT-biotransformation. The biosensor format involves the immobilization of polyphenol oxidase into a composite matrix made of glassy carbon microspheres and mineral oil.
View Article and Find Full Text PDFThe performance of amperometric glucose biosensors based on the dispersion of glucose oxidase (GOx) and copper oxide within a classical carbon (graphite) paste composite is reported in this work. Copper oxide promotes an excellent electrocatalytic activity towards the oxidation and reduction of hydrogen peroxide, allowing a large decrease in the oxidation and reduction overpotentials, as well as an important enhancement of the corresponding currents. Therefore, it is possible to perform the glucose biosensing at low potentials where there is no interference even in large excess of ascorbic acid, uric acid or acetaminophen.
View Article and Find Full Text PDFThe aim of this review is to summarize the most relevant contributions in the development of electrochemical (bio)sensors based on carbon nanotubes in the last years. Since the first application of carbon nanotubes in the preparation of an electrochemical sensor, an increasing number of publications involving carbon nanotubes-based sensors have been reported, demonstrating that the particular structure of carbon nanotubes and their unique properties make them a very attractive material for the design of electrochemical biosensors. The advantages of carbon nanotubes to promote different electron transfer reactions, in special those related to biomolecules; the different strategies for constructing carbon nanotubes-based electrochemical sensors, their analytical performance and future prospects are discussed in this article.
View Article and Find Full Text PDFThe recognition of proteins by aptamer-modified electrode transducers reverses the surface charge and leads to a novel label-free impedance spectroscopy bioelectronic detection protocol based on a decrease in the electron transfer resistance.
View Article and Find Full Text PDF