Publications by authors named "Marcela A Morini"

The present study investigates a multicomponent lipid system that simulates the neuronal grey matter membrane, employing molecular acoustics as a precise, straightforward, and cost-effective methodology. Given the significance of omega-3 polyunsaturated fatty acids in the functionality of cellular membranes, this research examines the effects of reducing 1-palmitoyl-2-docosahexaenoylphosphatylcholine (PDPC) content on the compressibility and elasticity of the proposed membrane under physiological conditions. Our results align with bibliographic data obtained through other techniques, showing that as the proportion of PDPC increases in the grey matter membrane model, the system's compressibility decreases, and the membrane's elasticity increases, as evidenced by the reduction in the bulk modulus.

View Article and Find Full Text PDF

We employ molecular dynamics simulations to study the hydration properties of Dipalmitoylphosphatidylcholine (DPPC) bilayers, both in the gel and the liquid crystalline states. We show that while the tight hydration centers (PO and CO moieties) are significantly hydrated in both phases, the gel-fluid transition involves significant changes at the second hydration shell, particularly at the buried region between the hydrocarbon tails. Thus, while almost no buried water population exists in the gel state below the carbonyls, this hydrophobic region becomes partially water accesible in the liquid crystalline state.

View Article and Find Full Text PDF

The comprehension of the structure and behavior of water at interfaces and under nanoconfinement represents an issue of major concern in several central research areas like hydration, reaction dynamics and biology. From one side, water is known to play a dominant role in the structuring, the dynamics and the functionality of biological molecules, governing main processes like protein folding, protein binding and biological function. In turn, the same principles that rule biological organization at the molecular level are also operative for materials science processes that take place within a water environment, being responsible for the self-assembly of molecular structures to create synthetic supramolecular nanometrically-sized materials.

View Article and Find Full Text PDF

Ligands must displace water molecules from their corresponding protein surface binding site during association. Thus, protein binding sites are expected to be surrounded by non-tightly-bound, easily removable water molecules. In turn, the existence of packing defects at protein binding sites has been also established.

View Article and Find Full Text PDF

The discovery of small-molecule drugs aimed at disrupting protein-protein associations is expected to lead to promising therapeutic strategies. The small molecule binds to the target protein thus replacing its natural protein partner. Noteworthy, structural analysis of complexes between successful disruptive small molecules and their target proteins has suggested the possibility that such ligands might somehow mimic the binding behavior of the protein they replace.

View Article and Find Full Text PDF

A computational modeling (in gas phase) to study the disposition of the homologous surfactants in a bidimensional simple model of mixed and homogeneous micelles was performed for the case of R-trimethylammonium bromide surfactants with different linear R lengths from R = C(5) to C(17). First, the bidimensional homogeneous (one component) micelle was modeled, and as a second step, heterogeneous (two components) bidimensional micelles were modeled. The difference in the number of carbon atoms between hydrocarbon chains of the surfactants in the heterogeneous micelles, Δn(C), ranged from 2 to 8.

View Article and Find Full Text PDF

The micellization of an aqueous mixture of sodium dodecanoate (SDD) and sodium 10-undecenoate (SUD) was studied with the theory of mixed micellization. A strong nonideality was found, with a preferential composition of mixed micelles. This phenomenon was interpreted on the basis of the interaction between the vinyl group and water by hydrogen bonding.

View Article and Find Full Text PDF

The interaction between homologous surfactants in mixed micelles was studied by the Regular Solution Theory of mixed micelles. The interaction is independent of the nature of the polar head groups and attractive and the interaction parameter betaM depends linearly on the difference in chain length DeltanC. The interaction becomes ideal at DeltanC=0.

View Article and Find Full Text PDF

Titania mesosized particles were obtained by TiCl4 hydrolysis in Aerosol OT/water/n-hexane microemulsion. These particles were incorporated in surfactant templated silica mesoporous materials of MCM-41 and MCM-50 structures. Results depended on the surfactant: hexadecyltrimethylammonium bromide templated materials retained the honeycomb structure with small modifications in their characteristics.

View Article and Find Full Text PDF