A neural pathway from prefrontal cortex (PFC) to dorsal striatum (DS) has been suggested to mediate cognitive control of behavior, including proactive inhibitory control and attention. However, a direct causal demonstration thereof is lacking. Here, we show that selective chemogenetic silencing of corticostriatal PFC neurons in rats increases premature responses.
View Article and Find Full Text PDFNeuropsychopharmacology
November 2019
The role of medial prefrontal cortex (mPFC) in regulating nicotine taking and seeking remains largely unexplored. In this study we took advantage of the high time-resolution of optogenetic intervention by decreasing (Arch3.0) or increasing (ChR2) the activity of neurons in the dorsal and ventral mPFC during 5-s nicotine cue presentations in order to evaluate their contribution to cued nicotine seeking and taking.
View Article and Find Full Text PDFParkinson's disease and experimentally induced hemiparkinsonism are characterized by increased beta synchronization between cortical and subcortical areas. This change in beta connectivity might reflect either a symmetric increase in interareal influences or asymmetric changes in directed influences among brain areas. We assessed patterns of functional and directed connectivity within and between striatum and six cortical sites in each hemisphere of the hemiparkinsonian rat model.
View Article and Find Full Text PDFIn birds and mammals, including humans, melatonin-binding sites are abundant in brain areas that have no known clock function. Although the role of such binding sites is still unclear, it is assumed that these sites link neural functions to circadian or circannual demands of neuroendocrine homeostasis and reproduction. To investigate a possible direct role of melatonin in motor control, we studied the song and neural song system of the zebra finch.
View Article and Find Full Text PDF