Purpose: With state-of-the-art CAD/CAM technology, the fabrication of large and complex zirconia frameworks is just a click away. On the other hand, veneering of the frameworks is still operator-dependent. The aim of this work was to evaluate CAD veneering of zirconia restorations in terms of zirconia veneer bond strength and impact energy of fracture in a step towards complete automation of the fabrication process.
View Article and Find Full Text PDFThis study evaluated the fracture strength and microtensile bond strength of a new computer-aided design (CAD) veneering method for zirconia frameworks. A new CAD/computer-assisted manufacture system was used to fabricate a resin replica of the esthetic ceramic required to veneer a zirconia framework. The replicas were processed using press-on technology.
View Article and Find Full Text PDFObjectives: All ceramic restorations without metal have great advantages in their biocompatibility and aesthetic aspects. With the introduction of new core materials, the cores are sufficiently strong to produce long lasting all-ceramic restorations; however, the stresses in the veneering porcelain could still determine the longevity. The objective of this study was to evaluate, by finite element analysis (FEA), the influence of different core materials on the stress distribution in dental crowns.
View Article and Find Full Text PDF