Decades of iteration on scientific imaging hardware and software has yielded an explosion in not only the size, complexity, and heterogeneity of image datasets but also in the tooling used to analyze this data. This wealth of image analysis tools, spanning different programming languages, frameworks, and data structures, is itself a problem for data analysts who must adapt to new technologies and integrate established routines to solve increasingly complex problems. While many "bridge" layers exist to unify pairs of popular tools, there exists a need for a general solution to unify new and existing toolkits.
View Article and Find Full Text PDFDespite recent advances, the adoption of computer vision methods into clinical and commercial applications has been hampered by the limited availability of accurate ground truth tissue annotations required to train robust supervised models. Generating such ground truth can be accelerated by annotating tissue molecularly using immunofluorescence (IF) staining and mapping these annotations to a post-IF hematoxylin and eosin (H&E) (terminal H&E) stain. Mapping the annotations between IF and terminal H&E increases both the scale and accuracy by which ground truth could be generated.
View Article and Find Full Text PDFSingle-cell imaging has emerged as a powerful means to study viral replication dynamics and identify sites of virus−host interactions. Multivariate aspects of viral replication cycles yield challenges inherent to handling large, complex imaging datasets. Herein, we describe the design and implementation of an automated, imaging-based strategy, “Human Immunodeficiency Virus Red-Green-Blue” (HIV RGB), for deriving comprehensive single-cell measurements of HIV-1 unspliced (US) RNA nuclear export, translation, and bulk changes to viral RNA and protein (HIV-1 Rev and Gag) subcellular distribution over time.
View Article and Find Full Text PDFPurpose: To evaluate the association between ellipsoid zone (EZ) on spectral domain optical coherence tomography (SD-OCT) and visual acuity letter score (VALS) in participants with retinal vein occlusion in the Study of Comparative Treatments for Retinal Vein Occlusion 2.
Methods: SD-OCT scans of 362 participants were qualitatively assessed at baseline and months 1, 6, 12, and 24 for EZ status as normal, patchy, or absent. The thickness of EZ layer in the central subfield was also obtained using machine learning.
Background And Objective: To develop a semi-automated, machine-learning based workflow to evaluate the ellipsoid zone (EZ) assessed by spectral domain optical coherence tomography (SD-OCT) in eyes with macular edema secondary to central retinal or hemi-retinal vein occlusion in SCORE2 treated with anti-vascular endothelial growth factor agents.
Methods: SD-OCT macular volume scans of a randomly selected subset of 75 SCORE2 study eyes were converted to the Digital Imaging and Communications in Medicine (DICOM) format, and the EZ layer was segmented using nonproprietary software. Segmented layer coordinates were exported and used to generate en face EZ thickness maps.