The proteases of the mitochondrial inner membrane are challenging yet highly desirable drug targets for complex, multifactorial diseases prevalent mainly in the elderly. Among them, OMA1 with its substrates OPA1 and DELE1 safeguards mitochondrial homeostasis at the intersection of energy metabolism and apoptosis, which may have relevance for neurodegeneration, malignancy and heart failure, among other diseases. Little is known about OMA1.
View Article and Find Full Text PDFACS Chem Biol
November 2021
Mitochondrial proteases are interesting but challenging drug targets for multifactorial diseases, such as neurodegeneration and cancer. The mitochondrial inner membrane protease OMA1 is a bona fide drug target for heart failure supported by data from human linkage analysis and animal disease models, but presumably relevant for more indications. OMA1 acts at the intersection of energy metabolism and stress signaling.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Res
November 2021
The neuropathological hallmarks of Alzheimer's Disease are plaques and neurofibrillary tangles. Yet, Alzheimer's is a complex disease with many contributing factors, such as energy-metabolic changes, which have been documented in autopsy brains from individuals with Alzheimer's and animal disease models alike. One conceivable explanation is that the interplay of age-related extracellular and intracellular alterations pertaining to Alzheimer's, such as cerebrovascular changes, protein aggregates and inflammation, evoke a mitochondrial response.
View Article and Find Full Text PDFOMA1 is a mitochondrial protease. Among its substrates are DELE1, a signaling peptide, which can elicit the integrated stress response, as well as the membrane-shaping dynamin-related GTPase OPA1, which can drive mitochondrial outer membrane permeabilization. OMA1 is dormant under physiological conditions but rapidly activated upon mitochondrial stress, such as loss of membrane potential or excessive reactive oxygen species.
View Article and Find Full Text PDFThe mitochondrial inner membrane proteins OMA1 and OPA1 belong to the BAX/BAK1-dependent apoptotic signaling pathway, which can be regulated by tumor protein p53 and the prohibitins PHB and PHB2 in the context of neoplastic disease. For the most part these proteins have been studied separate from each other. Here, I argue that the OMA1 mechanism of action represents the missing link between p53 and cytochrome c release.
View Article and Find Full Text PDFRetinal degenerations, including age-related macular degeneration and the retinitis pigmentosa family of diseases, are among the leading causes of legal blindness in the United States. We previously found that Stanniocalcin-1 (STC-1) reduced photoreceptor loss in the S334ter-3 and Royal College of Surgeons rat models of retinal degeneration. The results were attributed in part to a reduction in oxidative stress.
View Article and Find Full Text PDFHeterozygous mutations in the gene lead to progranulin (PGRN) haploinsufficiency and cause frontotemporal dementia (FTD), a neurodegenerative syndrome of older adults. Homozygous mutations, on the other hand, lead to complete PGRN loss and cause neuronal ceroid lipofuscinosis (NCL), a lysosomal storage disease usually seen in children. Given that the predominant clinical and pathological features of FTD and NCL are distinct, it is controversial whether the disease mechanisms associated with complete and partial PGRN loss are similar or distinct.
View Article and Find Full Text PDFMutations in collagen, type IV, alpha 1 (COL4A1), a major component of basement membranes, cause multisystem disorders in humans and mice. In the eye, these include anterior segment dysgenesis, optic nerve hypoplasia and retinal vascular tortuosity. Here we investigate the retinal pathology in mice carrying dominant-negative Col4a1 mutations.
View Article and Find Full Text PDFBasement membranes are highly specialized extracellular matrices. Once considered inert scaffolds, basement membranes are now viewed as dynamic and versatile environments that modulate cellular behaviors to regulate tissue development, function, and repair. Increasing evidence suggests that, in addition to providing structural support to neighboring cells, basement membranes serve as reservoirs of growth factors that direct and fine-tune cellular functions.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
October 2015
Purpose: Mutations in the gene encoding collagen type IV alpha 1 (COL4A1) cause multisystem disorders including anterior segment dysgenesis (ASD) and optic nerve hypoplasia. The penetrance and severity of individual phenotypes depends on genetic context. Here, we tested the effects of a Col4a1 mutation in two different genetic backgrounds to compare how genetic context influences ocular dysgenesis, IOP, and progression to glaucoma.
View Article and Find Full Text PDFPurpose: Endoplasmic reticulum (ER) stress activates inositol requiring enzyme 1 (IRE1), a key regulator of the unfolded protein response. The ER stress activated indicator (ERAI) transgenic mouse expresses a yellow fluorescent GFP variant (Venus) when IRE1 is activated by ER stress. We tested whether ERAI mice would allow for real-time longitudinal studies of ER stress in living mouse eyes.
View Article and Find Full Text PDFAging involves defined genetic, biochemical and cellular pathways that regulate lifespan. These pathways are called longevity pathways and they have relevance for many age-related diseases. In the eye, longevity pathways are involved in the major blinding diseases, cataract, glaucoma, age-related macular degeneration (AMD) and diabetic retinopathy.
View Article and Find Full Text PDFDepending on endoplasmic reticulum (ER) stress levels, the ER transmembrane multidomain protein IRE1α promotes either adaptation or apoptosis. Unfolded ER proteins cause IRE1α lumenal domain homo-oligomerization, inducing trans autophosphorylation that further drives homo-oligomerization of its cytosolic kinase/endoribonuclease (RNase) domains to activate mRNA splicing of adaptive XBP1 transcription factor. However, under high/chronic ER stress, IRE1α surpasses an oligomerization threshold that expands RNase substrate repertoire to many ER-localized mRNAs, leading to apoptosis.
View Article and Find Full Text PDFMitochondrial quality control is fundamental to all neurodegenerative diseases, including the most prominent ones, Alzheimer's Disease and Parkinsonism. It is accomplished by mitochondrial network dynamics - continuous fission and fusion of mitochondria. Mitochondrial fission is facilitated by DRP1, while MFN1 and MFN2 on the mitochondrial outer membrane and OPA1 on the mitochondrial inner membrane are essential for mitochondrial fusion.
View Article and Find Full Text PDFAims: The optic atrophy 1 (OPA1) protein is an essential protein involved in the fusion of the mitochondrial inner membrane. Despite its high level of expression, the role of OPA1 in the heart is largely unknown. We investigated the role of this protein in Opa1(+/-) mice, having a 50% reduction in OPA1 protein expression in cardiac tissue.
View Article and Find Full Text PDFDominant optic atrophy (DOA) is genetically heterogeneous and pathogenic mutations have been identified in the OPA1 and OPA3 genes, both encoding for mitochondrial proteins. We characterized clinical and laboratory features in a large OPA1-negative family with complicated DOA. Search for mitochondrial dysfunction was performed by studying muscle biopsies, fibroblasts, platelets and magnetic resonance (MR) spectroscopy.
View Article and Find Full Text PDFBackground: Up to the 1950s, there was an ongoing debate about the diversity of hereditary optic neuropathies, in particular as to whether all inherited optic atrophies can be ascribed to Leber's hereditary optic neuropathy (LHON) or represent different disease entities. In 1954 W. Jaeger published a detailed clinical and genealogical investigation of a large family with explicit autosomal dominant segregation of optic atrophy thus proving the existence of a discrete disease different from LHON, which is nowadays known as autosomal dominant optic atrophy (ADOA).
View Article and Find Full Text PDFPurpose: The main disease features of autosomal dominant optic atrophy (ADOA) are a bilateral reduction of visual acuity, cecocentral scotoma, and frequently tritanopia, which have been ascribed to a progressive loss of retinal ganglion cells (RGCs) and subsequent degeneration of the optic nerve. The main disease-causing gene is OPA1. Here, we examine a mouse carrying a pathogenic mutation in Opa1 by electrophysiological measurements and assess the fate of RGCs.
View Article and Find Full Text PDFThe ubiquitously expressed gene OPA1 is the main disease causing gene for autosomal dominant optic atrophy (ADOA). These patients present with bilateral reduction in visual acuity, central visual field defects and impaired color vision, secondary to the progressive loss of retinal ganglion cells (RGCs) and subsequent degeneration of the optic nerve. Up to now, it is not clear why a mutation in a ubiquitously expressed gene affects only RGCs and the optic nerve.
View Article and Find Full Text PDFMutations in the optineurin gene are associated with open-angle glaucoma. Its gene product is a 74 kDa protein implicated in several cellular pathways. Although a range of interacting partners of optineurin have been identified, its physiological and pathophysiological role remains unclear.
View Article and Find Full Text PDFAutosomal dominant optic atrophy (adOA) is a juvenile onset, progressive ocular disorder characterized by bilateral loss of vision, central visual field defects, colour vision disturbances, and optic disc pallor. adOA is most frequently associated with mutations in OPA1 encoding a dynamin-related large GTPase that localizes to mitochondria. Histopathological studies in adOA patients have shown a degeneration of retinal ganglion cells (RGCs) and a loss of axons in the optic nerve.
View Article and Find Full Text PDF