Publications by authors named "Marcel Stahn"

We present the Dynamic Radii Adjustment for COntinuum solvation (DRACO) approach, which employs precomputed atomic partial charges and coordination numbers of the solute atoms to improve the solute cavity. As such, DRACO is compatible with major solvation models, improving their performance significantly and robustly at virtually no extra cost, especially for charged solutes. Combined with the purely electrostatic CPCM and COSMO models, DRACO reduces the mean absolute deviation (MAD) of the solvation free energy by up to 4.

View Article and Find Full Text PDF

We have developed a new method to accurately account for solvation effects in semiempirical quantum mechanics based on a polarizable continuum model (PCM). The extended conductor-like polarizable continuum model (CPCM-X) incorporates a computationally efficient domain decomposition conductor-like screening model (ddCOSMO) for extended tight binding (xTB) methods and uses a post-processing approach based on established solvation models, like the conductor-like screening model for real solvents (COSMO-RS) and the universal solvent model based on solute electron density (SMD). According to various benchmarks, the approach performs well across a broad range of systems and applications, including hydration free energies, non-aqueous solvation free energies, and large supramolecular association reactions of neutral and charged species.

View Article and Find Full Text PDF

An isostructural series of boron/phosphorus Lewis pairs was systematically investigated. The association constants of the Lewis pairs were determined at variable temperatures, enabling the extraction of thermodynamic parameters. The stabilization of the Lewis adduct increased with increasing size of the dispersion energy donor groups, although the donor and acceptor properties of the Lewis pairs remained largely unchanged.

View Article and Find Full Text PDF

Proton transfer reaction mass spectrometry (PTR-MS) has become an indispensable analytical tool for indoor related sciences. With high-resolution techniques not only is the online monitoring of the selected ions in the gas phase possible, but also, with some limitations, the identification of substance mixtures without chromatographic separation. The quantification is carried out with the help of kinetic laws, which require knowledge of the conditions in the reaction chamber, the reduced ion moblilities and the reaction rate constant under these conditions.

View Article and Find Full Text PDF

The previously not studied photochemical degradation of sulfamethoxazole (SMX) to the isomer of SMX (ISO) was measured via a polychromatic (Xe) and a monochromatic (Hg) light source and accompanied by quantum chemical DFT calculations. In addition to the [Formula: see text] of ISO, tautomer-dependent properties such as the [Formula: see text] were measured and theoretically confirmed by DFT. The kinetics in solutions below and above the [Formula: see text] of SMX were studied for the available and quantifiable products SMX, ISO, 3-amino-5-methylisoxazole (AMI), 2-amino-5-methyloxazole (AMO), and sulfanilic acid (SUA).

View Article and Find Full Text PDF

The vapor pressure is a specific and temperature-dependent parameter that describes the volatility of a substance and thus its driving force for evaporation or sublimation into the gas phase. Depending on the magnitude of the vapor pressure, there are different methods for experimental determination. However, these are usually associated with a corresponding amount of effort and become less accurate as the vapor pressure decreases.

View Article and Find Full Text PDF

Octanol/water (), octanol/air (), and hexadecane/air () partition coefficients are calculated for 67 organic compounds of environmental concern using computational chemistry. The extended CRENSO workflow applied here includes the calculation of extensive conformer ensembles with semiempirical methods and refinement through density functional theory, taking into account solvation models, especially COSMO-RS, and thermostatistical contributions. This approach is particularly advantageous for describing large and nonrigid molecules.

View Article and Find Full Text PDF

We present a robust and efficient method to implicitly account for solvation effects in modern semiempirical quantum mechanics and force fields. A computationally efficient yet accurate solvation model based on the analytical linearized Poisson-Boltzmann (ALPB) model is parameterized for the extended tight binding (xTB) and density functional tight binding (DFTB) methods as well as for the recently proposed GFN-FF general force field. The proposed methods perform well over a broad range of systems and applications, from conformational energies over transition-metal complexes to large supramolecular association reactions of charged species.

View Article and Find Full Text PDF

The application of quantum chemical, automatic multilevel modeling workflows for the determination of thermodynamic (e.g., conformation equilibria, partition coefficients, p values) and spectroscopic properties of relatively large, nonrigid molecules in solution is described.

View Article and Find Full Text PDF