DNA-based technologies have been used in forensic practice since the mid-1980s. While PCR-based STR genotyping using Capillary Electrophoresis remains the gold standard for generating DNA profiles in routine casework worldwide, the research community is continually seeking alternative methods capable of providing additional information to enhance discrimination power or contribute with new investigative leads. Oxford Nanopore Technologies (ONT) and PacBio third-generation sequencing have revolutionized the field, offering real-time capabilities, single-molecule resolution, and long-read sequencing (LRS).
View Article and Find Full Text PDFThe developmental origins of healthy and disease (DOHaD) concept has demonstrated a higher rate of chronic diseases in the adult population of individuals whose mothers experienced severe maternal protein restriction (MPR). Using proteomic and in silico analyses, we investigated the lung proteomic profile of young and aged rats exposed to MPR during pregnancy and lactation. Our results demonstrated that MPR lead to structural and immune system pathways changes, and this outcome is coupled with a rise in the PI3k-AKT-mTOR signaling pathway, with increased MMP-2 activity, and CD8 expression in the early life, with long-term effects with aging.
View Article and Find Full Text PDFExp Cell Res
July 2024
Considering the importance of alternative methodologies to animal experimentation, we propose an organoid-based biological model for in vitro blood vessel generation, achieved through co-culturing endothelial and vascular smooth muscle cells (VSMCs). Initially, the organoids underwent comprehensive characterization, revealing VSMCs (α-SMA + cells) at the periphery and endothelial cells (CD31 cells) at the core. Additionally, ephrin B2 and ephrin B4, genes implicated in arterial and venous formation respectively, were used to validate the obtained organoid.
View Article and Find Full Text PDFCaffeine has been extensively studied in the context of CNS pathologies as many researchers have shown that consuming it reduces pro-inflammatory biomarkers, potentially delaying the progression of neurodegenerative pathologies. Several lines of evidence suggest that adenosine receptors, especially A and AA receptors, are the main targets of its neuroprotective action. We found that caffeine pretreatment 15 min before LPS administration reduced the expression of Il1b in the hippocampus and striatum.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
January 2024
Cobalt-doped monetite powders were synthesized by coprecipitation method under a cobalt nominal content between 2 and 20 mol % of total cation. Structural characterization of samples was performed by using X-ray diffraction (XRD), Fourier transform infrared spectroscopy, scanning electron microscopy, and energy dispersive X-ray spectroscopy. XRD results indicated that the Co-doped samples exhibited a monetite single-phase with the cell parameters and crystallite size dependent on the amount of substitutional element incorporated into the triclinic crystalline structure.
View Article and Find Full Text PDFJ Neuroimmunol
September 2023
Brain Long non-coding RNA (lncRNA) and microRNAs (miRs) play essential roles in the regulation of several important biological processes, including neuronal activity, cognitive processes, neurogenesis, angiogenesis, and neuroinflammation. In this context, the transcriptional repressor, RE1 silencing transcription factor (Rest), acts regulating the expression of neuronal genes as well as of lncRNAs and multiple miRNAs in the central nervous system. Nevertheless, its role in neuroinflammation was less explored.
View Article and Find Full Text PDFTo evaluate the cellular response of both an intact fish skin membrane and a porcine-derived collagen membrane and investigate the bone healing response of these membranes using a translational, preclinical, guided-bone regeneration (GBR) canine model. Two different naturally sourced membranes were evaluated in this study: (i) an intact fish skin membrane (Kerecis Oral®, Kerecis) and (ii) a porcine derived collagen (Mucograft®, Geistlich) membrane, positive control. For the in vitro experiments, human osteoprogenitor (hOP) cells were used to assess the cellular viability and proliferation at 24, 48, 72, and 168 h.
View Article and Find Full Text PDFIt is important to understand whether endothelial cells are epigenetically affected by titanium-enriched media when angiogenesis is required during bone development and it is expected to be recapitulated during osseointegration of biomaterials. To better address this issue, titanium-enriched medium was obtained from incubation of titanium discs for up to 24 h as recommended by ISO 10993-5:2016, and further used to expose human umbilical vein endothelial cells (HUVECs) for up to 72 h, when the samples were properly harvested to allow molecular analysis and epigenetics. In general, our data show an important repertoire of epigenetic players in endothelial cells responding to titanium, reinforcing protein related to the metabolism of acetyl and methyl groups, as follows: Histone deacetylases (HDACs) and NAD-dependent deacetylase sirtuin-1 (Sirt1), DNA methyltransferases (DNMTs) and ten-eleven translocation (TET) methylcytosine dioxygenases, which in conjunction culminate in driving chromatin condensation and the methylation profile of DNA strands, respectively.
View Article and Find Full Text PDFCobalt-chromium (Co-Cr)-based alloys are emerging with important characteristics for use in dentistry, but the knowledge of epigenetic mechanisms in endothelial cells has barely been achieved. In order to address this issue, we have prepared a previously Co-Cr-enriched medium to further treat endothelial cells (HUVEC) for up to 72 h. Our data show there is important involvement with epigenetic machinery.
View Article and Find Full Text PDFIt is known that cellular events underlying the processes of bone maintenance, remodeling, and repair have their basis in the embryonic production of bone. Shh signaling is widely described developing important morphogenetic control in bone by modifying the activity of osteoblast. Furthermore, identifying whether it is associated with the modulation of nuclear control is very important to be the basis for further applications.
View Article and Find Full Text PDFAutologous platelet-rich plasma accelerates bone healing by releasing biomolecules during their degranulation process, which are transported by vesicle-like structures called platelet microparticles (PMPs). However, the underlying mechanisms regulating the osteogenic differentiation by PMP-released miRs remain poorly understood and this prompted us to better address this issue. Thus, miRNAseq expression profiles (E-GEOD-76789) were downloaded from ArrayExpress database.
View Article and Find Full Text PDFDev Biol
February 2021
Mesenchymal stem cells are candidates for therapeutic strategies in periodontal repair due to their osteogenic potential. In this study, we identified epigenetic markers during osteogenic differentiation, taking advantage of the individual pattern of mesenchymal cells of the periodontal ligament with high (h-PDLCs) and low (l-PDLCs) osteogenic capacity. We found that the involvement of non-coding RNAs in the regulation of the RUNX2 gene is strongly associated with high osteogenic potential.
View Article and Find Full Text PDFFor bone purposes, surface modifications are a common trend in biomaterials research aiming to reduce the time necessary for osteointegration, culminating in faster recovery of patients. In this scenario, analysis of intracellular signaling pathways have emerged as an important and reliable strategy to predict biological responses from approaches. We have combined global analysis of intracellular protein phosphorylation, systems biology and bioinformatics into an early biomaterial analysis routine called OsteoBLAST.
View Article and Find Full Text PDFThere is an increased effort on developing novel and active surfaces in order to accelerate their osteointegration, such as nanosized crystalline hydroxyapatite coating (HAnano®). To better understand the biological behavior of osteoblasts grown on HAnano® surface, the set of data was compared with SLActive®, a hydrophilic sandblasted titanium surface. Methodologically, osteoblasts were seeded on both surfaces up to 72 hours, to allow evaluating cell adhesion, viability, and set of genes encoding proteins related with adhesion, proliferation, and differentiation.
View Article and Find Full Text PDFTo better address whether the long noncoding RNAs (lncRNAs) HOTAIR and HOTTIP are mechanosensitive genes, they were investigated in differentially challenged endothelial cells with respect to a circuit of tensional forces, considering the performance of both arterial and venous endothelial cells. We subjected arterial- and venous-obtained endothelial cells to a circuit of tensional forces within a shear stress model in vitro. Real-time quantitative polymerase chain reaction analysis indicated that microRNA (miRNA)-related processing machinery is significantly required in shear stressed arterial endothelial cell metabolism, which orchestrates miRNA (small noncoding RNA) involvement, and their involvement suggests lncRNA involvement.
View Article and Find Full Text PDFThe HOXA gene cluster is generally recognized as a pivotal mediator of positional identity in the skeletal system, expression of different orthologues conferring alternative locational phenotype of the vertebrate bone. Strikingly, however, the molecular mechanisms that regulate orthologue-specific expression of different HOXA cluster members in gestating osteoblasts remain largely obscure, but in analogy to the processes observed in acute lymphatic leukemia it is assumed that alternative methylation of HOXA promoter regions drives position specific expression patterns. In an effort to understand HOXA cluster gene expression in osteogenesis we characterize both expression and the epigenetic landscape of the HOXA gene cluster during in vitro osteoblast formation from mesenchymal precursors.
View Article and Find Full Text PDFMolecular mechanism governing inflammatory scenario in response to titanium (Ti)-nanotexturing surfaces needs to be better addressed. Thus, we subjected pre-osteoblast to different Ti-texturing surfaces, as follows: machined (Mac), double acid-etching (DAE), and nanoscaled hydroxyapatite-blasted titanium surface (nHA), considering the cells chronically responding either directly (when the cells were cultured onto the surfaces) or indirectly (when the cells were challenged with the conditioned medium by the surfaces), up to 10 days. Our results showed that there is a dynamic requirement of inflammatory-related genes activation in response to nHA by up expressing IL1ß, IL6, IL10, and IL33 (direct condition) and IL6, IL10, IL18 (indirect condition).
View Article and Find Full Text PDFAlthough layered double hydroxides (LDH) have been listed as promising nanomaterials in human healthcare, very little has been achieved on osteoblast inflammatory signaling. Thus, osteoblasts were challenged with two LDHs (MgAl-Cl and ZnAl-Cl, at 0.002 mg/mL) up to 24 h, establishing an acute inflammatory mechanism, as well as identifying whether Sonic hedgehog (Shh) signaling has an influence.
View Article and Find Full Text PDFMol Cell Endocrinol
December 2018
We therefore investigated whether there is synergism between triiodothyronine (T3) hormone and trophic molecules released from mechanically-stressed endothelial cells (EC-enriched medium) in osteogenic phenotype by mapping classical repertory of genes. Although there are studies reporting the efficiency of T3 hormone on bone cells, it is scarce considering their effect in conjunction with other physiologically active molecules, such as those released by the active endothelial cells. To address this issue, human bone marrow-derived mesenchymal stem cells (hBMSCs) were treated with EC-enriched medium subjected to shear-stress up to 72 h in vitro, in conjunction or not with T3 hormone.
View Article and Find Full Text PDFThe biological response to zirconia (ZrO) is not completely understood, which prompted us to address its effect on pre-osteoblastic cells in both direct and indirect manner. Our results showed that zirconia triggers important intracellular signaling mainly by governing survival signals which leads to cell adhesion and proliferation by modulating signaling cascade responsible for dynamic cytoskeleton rearrangement, as observed by fluorescence microscopy. The phosphorylations of Focal Adhesion Kinase (FAK) and Rac1 decreased in response to ZrO enriched medium.
View Article and Find Full Text PDF