J Colloid Interface Sci
December 2024
Hypothesis: Ellipsoidal particles confined at liquid interfaces exhibit complex self-assembly due to quadrupolar capillary interactions, favouring either tip-to-tip or side-to-side configurations. However, predicting and controlling which structure forms remains challenging. We hypothesize that introducing a polymer-based soft shell around the particles will modulate these capillary interactions, providing a means to tune the preferred self-assembly configuration based on particle geometry and shell properties.
View Article and Find Full Text PDFStimuli-responsive emulsions offer a dual advantage, combining long-term storage with controlled release triggered by external cues such as pH or temperature changes. This study establishes that thermo-responsive emulsion behaviour is primarily determined by interactions between, rather than within, interfaces. Consequently, the stability of these emulsions is intricately tied to the nature of the stabilizing microgel particles - whether they are more polymeric or colloidal, and the morphology they assume at the liquid interface.
View Article and Find Full Text PDFLight carries energy and momentum. It can therefore alter the motion of objects on the atomic to astronomical scales. Being widely available, readily controllable, and broadly biocompatible, light is also an ideal tool to propel microscopic particles, drive them out of thermodynamic equilibrium, and make them active.
View Article and Find Full Text PDFAfter spilling coffee, a tell-tale stain is left by the drying droplet. This universal phenomenon, known as the coffee ring effect, is observed independent of the dispersed material. However, for many technological processes such as coating techniques and ink-jet printing a uniform particle deposition is required and the coffee ring effect is a major drawback.
View Article and Find Full Text PDFPolyhedral liquid marbles were fabricated using hydrophobic polymer plates in the shape of a circle, a heart and a star as a stabilizer and water as an inner liquid phase. Boxes could be fabricated by the evaporation of the inner water from the liquid marbles. The fabrication efficiency and stability of these boxes as a function of the plate shape were investigated.
View Article and Find Full Text PDFThermo-responsive microgel particles can exhibit a drastic volume shrinkage upon increasing the solvent temperature. Recently we found that the spreading of poly(N-isopropylacrylamide) (PNiPAm) microgels at a liquid interface under the influence of surface tension hinders the temperature-induced volume phase transition. In addition, we observed a hysteresis behavior upon temperature cycling, i.
View Article and Find Full Text PDFMicrogels, consisting of a swollen polymer network, exhibit a more complex self-assembly behavior compared to incompressible colloidal particles, because of their ability to deform at a liquid interface or collapse upon compression. Here, we investigate the collective phase behavior of two-dimensional binary mixtures of microgels confined at the air/water interface. We use stimuli-responsive poly(N-isopropylacrylamide) microgels with different crosslinking densities, and therefore different morphologies at the interface.
View Article and Find Full Text PDFSoft particles such as microgels can undergo significant and anisotropic deformations when adsorbed to a liquid interface. This, in turn, leads to a complex phase behavior upon compression. To date, experimental efforts have predominantly provided phenomenological links between microgel structure and resulting interfacial behavior, while simulations have not been entirely successful in reproducing experiments or predicting the minimal requirements for the desired phase behavior.
View Article and Find Full Text PDFThe combination of metal-assisted chemical etching (MACE) with colloidal lithography has emerged as a simple and cost-effective approach to nanostructure silicon. It is especially efficient at synthesizing Si micro- and nanowire arrays using a catalytic metal mesh, which sinks into the silicon substrate during the etching process. The approach provides a precise control over the array geometry, without requiring expensive nanopatterning techniques.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2020
Metal-silicon nanowire array photoelectrodes provide a promising architecture for water-splitting because they can afford high catalyst loading and decouple charge separation from the light absorption process. To further improve and understand these hybrid nanowire photoelectrodes, control of the catalyst amount and location within the wire array is required. Such a level of control is currently synthetically challenging to achieve.
View Article and Find Full Text PDFCollective excitation of periodic arrays of metallic nanoparticles by coupling localized surface plasmon resonances to grazing diffraction orders leads to surface lattice resonances with narrow line width. These resonances may find numerous applications in optical sensing and information processing. Here, a new degree of freedom of surface lattice resonances is experimentally investigated by demonstrating handedness-dependent excitation of surface lattice resonances in arrays of chiral plasmonic crescents.
View Article and Find Full Text PDFHard-core/soft shell (HCSS) particles have been shown to self-assemble into a remarkably rich variety of structures under compression due to the simple interplay between the hard-core and soft-shoulder length scales in their interactions. Most studies in this area model the soft shell interaction as a square shoulder potential. Although appealing from a theoretical point of view, the potential is physically unrealistic because there is no repulsive force in the soft shell regime, unlike in experimental HCSS systems.
View Article and Find Full Text PDFThe controlled aggregation of colloidal particles is not only a widespread natural phenomenon but also serves as a tool to design complex building blocks with tailored shape and functionalities. However, the quantitative characterization of such heteroaggregation processes remains challenging. Here, we demonstrate the use of analytical centrifugation to characterize the heteroaggregation of silica particles and soft microgels bearing similar surface charges.
View Article and Find Full Text PDFWe report on a quick, simple, and cost-effective solution-phase approach to prepare centimeter-sized morphology-graded vertically aligned Si nanowire arrays. Gradients in the nanowire diameter and shape are encoded through the macroscale substrate via a "dip-etching" approach, where the substrate is removed from a KOH etching solution at a constant rate, while morphological control at the nanowire level is achieved via sequential metal-assisted chemical etching and KOH etching steps. This combined approach provides control over light absorption and reflection within the nanowire arrays at both the macroscale and nanoscale, as shown by UV-vis spectroscopy and numerical three-dimensional finite-difference time-domain simulations.
View Article and Find Full Text PDFThe confinement of colloidal particles at liquid interfaces offers many opportunities for materials design. Adsorption is driven by a reduction of the total free energy as the contact area between the two liquids is partially replaced by the particle. From an application point of view, particle-stabilized interfaces form emulsions and foams with superior stability.
View Article and Find Full Text PDFThe volume phase transition of microgels is one of the most paradigmatic examples of stimuli-responsiveness, enabling a collapse from a highly swollen microgel state into a densely coiled state by an external stimulus. Although well characterized in bulk, it remains unclear how the phase transition is affected by the presence of a confining interface. Here, we demonstrate that the temperature-induced volume phase transition of poly(-isopropylacrylamide) microgels, conventionally considered an intrinsic molecular property of the polymer, is in fact largely suppressed when the microgel is adsorbed to an air/liquid interface.
View Article and Find Full Text PDFColloidal monolayers are important tools to fabricate surface structures at the nanoscale. A typical monolayer fabrication strategy involves the self-assembly of colloidal building blocks at liquid interfaces, which are subsequently deposited on a solid substrate. Even though this process is well established, the resulting order of the particles within the colloidal monolayer differs between batches of colloidal particles and can even change with the age of the dispersion.
View Article and Find Full Text PDFA templated electrochemical technique for patterning macroscopic arrays of single-crystalline Si micro- and nanowires with feature dimensions down to 5 nm is reported. This technique, termed three-dimensional electrochemical axial lithography (3DEAL), allows the design and parallel fabrication of hybrid silicon nanowire arrays decorated with complex metal nano-ring architectures in a flexible and modular approach. While conventional templated approaches are based on the direct replication of a template, our method can be used to perform high-resolution lithography on pre-existing nanostructures.
View Article and Find Full Text PDFColloidal lithography is a cost-efficient method to produce large-scale nanostructured arrays on surfaces. Typically, colloidal particles are assembled into hexagonal close-packed monolayers at liquid interfaces and deposited onto a solid substrate. Many applications, however, require non close-packed monolayers, which are more difficult to fabricate.
View Article and Find Full Text PDFSpherical colloidal particles typically self-assemble into hexagonal lattices when adsorbed at liquid interfaces. More complex assembly structures, including particle chains and phases with square symmetry, were theoretically predicted almost two decades ago for spherical particles interacting via a soft repulsive shoulder. Here, we demonstrate that such complex assembly phases can be experimentally realized with spherical colloidal particles assembled at the air/water interface in the presence of molecular amphiphiles.
View Article and Find Full Text PDFSpherical colloidal particles generally self-assemble into hexagonal lattices in two dimensions. However, more complex, non-hexagonal phases have been predicted theoretically for isotropic particles with a soft repulsive shoulder but have not been experimentally realized. We study the phase behavior of microspheres in the presence of poly(N-isopropylacrylamide) (PNiPAm) microgels at the air/water interface.
View Article and Find Full Text PDF