Publications by authors named "Marcel R Schumann"

Plasma membrane damage commonly occurs during cellular growth and development. To counteract these potentially lethal injuries, membrane repair mechanisms have evolved, which promote the integrity of the lipid bilayer. Although the membrane of fungi is the target of important clinical drugs and agricultural fungicides, the molecular mechanisms which mediate membrane repair in these organisms remain elusive.

View Article and Find Full Text PDF

Colony initiation of filamentous fungi commonly involves fusion of germinating vegetative spores. Studies in Neurospora crassa revealed an unusual cell-cell communication mechanism mediating this process, in which the fusion partners coordinately alternate between two physiological stages, probably related to signal sending and receiving. This "cell dialog" involves the alternating, oscillatory recruitment of the SO protein and the MAK-2 MAP kinase module to the apical plasma membrane of growing fusion tips.

View Article and Find Full Text PDF

The fungal vacuole is an organelle, which adopts pleiotropic morphologies and functions. In aging and starving hyphae it is the compartment of degradation and recycling of cellular constituents. Here we identified TSP3, one of three tetraspanins present in the filamentous ascomycete fungus Neurospora crassa, as a vacuolar membrane protein.

View Article and Find Full Text PDF

In recent years, the filamentous fungus Neurospora crassa has advanced as a model organism for studying eukaryotic cell-cell communication and fusion. Cell merger in this fungus employs an unusual mode of communication, in which the fusion partners appear to switch between signal sending and receiving. Many molecular factors mediating this intriguing mechanism and the subsequent membrane merger have been identified.

View Article and Find Full Text PDF