Circadian clocks are endogenous timekeeping mechanisms that coordinate internal physiological responses with the external environment. EARLY FLOWERING3 (ELF3), PSEUDO RESPONSE REGULATOR (PRR9), and PRR7 are essential components of the plant circadian clock and facilitate entrainment of the clock to internal and external stimuli. Previous studies have highlighted a critical role for ELF3 in repressing the expression of PRR9 and PRR7.
View Article and Find Full Text PDFIn 1998, Bill Gray and colleagues showed that warm temperatures trigger arabidopsis hypocotyl elongation in an auxin-dependent manner. This laid the foundation for a vibrant research discipline. With several active members of the 'thermomorphogenesis' community, we here reflect on 25 years of elevated ambient temperature research and look to the future.
View Article and Find Full Text PDFRoots are highly plastic organs enabling plants to adapt to a changing below-ground environment. In addition to abiotic factors like nutrients or mechanical resistance, plant roots also respond to temperature variation. Below the heat stress threshold, Arabidopsis thaliana seedlings react to elevated temperature by promoting primary root growth, possibly to reach deeper soil regions with potentially better water saturation.
View Article and Find Full Text PDFEARLY FLOWERING 3 (ELF3) is an important regulator of various physiological and developmental processes and hence may serve to improve plant adaptation which will be essential for future plant breeding. To expand the limited knowledge on barley ELF3 in determining agronomic traits, we conducted field studies with heterogeneous inbred families (HIFs) derived from selected lines of the wild barley nested association mapping population HEB-25. During two growing seasons, phenotypes of nearly isogenic HIF sister lines, segregating for exotic and cultivated alleles at the ELF3 locus, were compared for 10 developmental and yield-related traits.
View Article and Find Full Text PDFIncrease in ambient temperatures caused by climate change affects various morphological and developmental traits of plants, threatening crop yield stability. In the model plant Arabidopsis thaliana, EARLY FLOWERING 3 (ELF3) plays prominent roles in temperature sensing and thermomorphogenesis signal transduction. However, how crop species respond to elevated temperatures is poorly understood.
View Article and Find Full Text PDFPlants show remarkable phenotypic plasticity and are able to adjust their morphology and development to diverse environmental stimuli. Morphological acclimation responses to elevated ambient temperatures are collectively termed thermomorphogenesis. In Arabidopsis thaliana, morphological changes are coordinated to a large extent by the transcription factor PHYTOCHROME-INTERACTING FACTOR 4 (PIF4), which in turn is regulated by several thermosensing mechanisms and modulators.
View Article and Find Full Text PDFAccess to inorganic phosphate (Pi), a principal intermediate of energy and nucleotide metabolism, profoundly affects cellular activities and plant performance. In most soils, antagonistic Pi-metal interactions restrict Pi bioavailability, which guides local root development to maximize Pi interception. Growing root tips scout the essential but immobile mineral nutrient; however, the mechanisms monitoring external Pi status are unknown.
View Article and Find Full Text PDFPosttranslational modifications add complexity and diversity to cellular proteomes. One of the most prevalent modifications across eukaryotes is ubiquitination, which is orchestrated by E3 ubiquitin ligases. U-box-containing E3 ligases have massively expanded in the plant kingdom and have diversified into plant U-box proteins (PUBs).
View Article and Find Full Text PDFCellular regeneration in response to wounding is fundamental to maintain tissue integrity. Various internal factors including hormones and transcription factors mediate healing, but little is known about the role of external factors. To understand how the environment affects regeneration, we investigated the effects of temperature upon the horticulturally relevant process of plant grafting.
View Article and Find Full Text PDFDaily changes in light and temperature are major entrainment cues that enable the circadian clock to generate internal biological rhythms that are synchronized with the external environment. With the average global temperature predicted to keep increasing, the intricate light-temperature coordination that is necessary for clock functionality is expected to be seriously affected. Hence, understanding how temperature signals are perceived by the circadian clock has become an important issue.
View Article and Find Full Text PDFOne of the most powerful methods to identify loci controlling complex quantitative traits has been the quantitative trait locus (QTL) mapping. The QTL mapping approach has proven immensely useful to improve our understanding of key pathways such as flowering time, growth, and disease resistance. Since major circadian clock parameters such as period, phase, and amplitude are quantitative in nature, the QTL mapping approach could also be used to study the complex genetic architecture of the circadian clock.
View Article and Find Full Text PDFPlants have a remarkable capacity to acclimate to their environment. Acclimation is enabled to a large degree by phenotypic plasticity, the extent of which confers a selective advantage, especially in natural habitats. Certain key events in evolution triggered adaptive bursts necessary to cope with drastic environmental changes.
View Article and Find Full Text PDFVarious strategies evolved in plants to adjust the position of organs relative to the prevailing temperature condition, which allows optimal plant growth and performance. Such responses are classically separated into nastic and tropic responses. During plant thermotropic responses, organs move towards (engage) or away (avoid) from a directional temperature cue.
View Article and Find Full Text PDFBackground: Cotyledon micrografting represents a useful tool for studying the central role of cotyledons during early plant development, especially their interplay with other plant organs with regard to long distance transport. While hypocotyl micrografting methods are well-established, cotyledon micrografting is still inefficient. By optimizing cotyledon micrografting, we aim for higher success rates and increased throughput in the model species .
View Article and Find Full Text PDFGlobal warming is one of the most detrimental aspects of climate change, affecting plant growth and development across the entire life cycle. This Review explores how different stages of development are influenced by elevated temperature in both wild plants and crops. Starting from seed development and germination, global warming will influence morphological adjustments, termed thermomorphogenesis, and photosynthesis primarily during the vegetative phase, as well as flowering and reproductive development.
View Article and Find Full Text PDFELF3 and GI are two important components of the Arabidopsis circadian clock. They are not only essential for the oscillator function but are also pivotal in mediating light inputs to the oscillator. Lack of either results in a defective oscillator causing severely compromised output pathways, such as photoperiodic flowering and hypocotyl elongation.
View Article and Find Full Text PDFPlants have a remarkable capacity to adjust their growth and development to elevated ambient temperatures. Increased elongation growth of roots, hypocotyls, and petioles in warm temperatures are hallmarks of seedling thermomorphogenesis. In the last decade, significant progress has been made to identify the molecular signaling components regulating these growth responses.
View Article and Find Full Text PDFLand plants evolved from charophytic algae, among which Charophyceae possess the most complex body plans. We present the genome of Chara braunii; comparison of the genome to those of land plants identified evolutionary novelties for plant terrestrialization and land plant heritage genes. C.
View Article and Find Full Text PDFThermomorphogenesis is defined as the suite of morphological changes that together are likely to contribute to adaptive growth acclimation to usually elevated ambient temperature [1, 2]. While many details of warmth-induced signal transduction are still elusive, parallels to light signaling recently became obvious (reviewed in [3]). It involves photoreceptors that can also sense changes in ambient temperature [3-5] and act, for example, by repressing protein activity of the central integrator of temperature information PHYTOCHROME-INTERACTING FACTOR 4 (PIF4 [6]).
View Article and Find Full Text PDFMotivation: Next Generation Sequencing (NGS) technologies generate a large amount of high quality transcriptome datasets enabling the investigation of molecular processes on a genomic and metagenomic scale. These transcriptomics studies aim to quantify and compare the molecular phenotypes of the biological processes at hand. Despite the vast increase of available transcriptome datasets, little is known about the evolutionary conservation of those characterized transcriptomes.
View Article and Find Full Text PDFBackground: Global increase in ambient temperatures constitute a significant challenge to wild and cultivated plant species. Forward genetic analyses of individual temperature-responsive traits have resulted in the identification of several signaling and response components. However, a comprehensive knowledge about temperature sensitivity of different developmental stages and the contribution of natural variation is still scarce and fragmented at best.
View Article and Find Full Text PDFAuxin is a small molecule morphogen that bridges SCF-AUX/IAA co-receptor interactions leading to ubiquitylation and proteasome-dependent degradation of AUX/IAA transcriptional repressors. Here, we systematically dissect auxin sensing by SCF-IAA6 and SCF-IAA19 co-receptor complexes, and assess IAA6/IAA19 ubiquitylation in vitro and IAA6/IAA19 degradation in vivo. We show that TIR1-IAA19 and TIR1-IAA6 have distinct auxin affinities that correlate with ubiquitylation and turnover dynamics of the AUX/IAA.
View Article and Find Full Text PDFThe developmental hourglass model has its foundations in classic anatomical studies by von Baer and Haeckel. In this context, even the conservation of animal body plans has been explained by evolutionary constraints acting on mid-embryogenic development. Recent studies have shown that developmental hourglass patterns also exist on the transcriptomic level, mirroring the corresponding morphological patterns.
View Article and Find Full Text PDFUnderstanding the molecular networks driving plant responses to high ambient temperatures is crucial for developing crop cultivars resistant to global warming. Although several factors involved in temperature signalling are known, a thermosensing mechanism had remained elusive. However, two recent publications demonstrate that the photoreceptor phytochrome B (phyB) also acts as a thermosensor.
View Article and Find Full Text PDF