Studies with monochromatic light stimuli have shown that the action spectrum for melatonin suppression exhibits its highest sensitivity at short wavelengths, around 460 to 480 nm. Other studies have demonstrated that filtering out the short wavelengths from white light reduces melatonin suppression. However, this filtering of short wavelengths was generally confounded with reduced light intensity and/or changes in color temperature.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
September 2013
We measure the color fidelity of visual scenes that are rendered under different (simulated) illuminants and shown on a calibrated LCD display. Observers make triad illuminant comparisons involving the renderings from two chromatic test illuminants and one achromatic reference illuminant shown simultaneously. Four chromatic test illuminants are used: two along the daylight locus (yellow and blue), and two perpendicular to it (red and green).
View Article and Find Full Text PDFThis study explores the effects of various spatiotemporal dynamic texture characteristics on human emotions. The emotional experience of auditory (eg, music) and haptic repetitive patterns has been studied extensively. In contrast, the emotional experience of visual dynamic textures is still largely unknown, despite their natural ubiquity and increasing use in digital media.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
October 2009
Color constancy algorithms are often evaluated by using a distance measure that is based on mathematical principles, such as the angular error. However, it is unknown whether these distance measures correlate to human vision. Therefore, the main goal of our paper is to analyze the correlation between several performance measures and the quality, obtained by using psychophysical experiments, of the output images generated by various color constancy algorithms.
View Article and Find Full Text PDFA common-sense assumption concerning visual perception states that brightness and darkness cannot coexist at a given spatial location. One corollary of this assumption is that achromatic colors, or perceived grey shades, are contained in a one-dimensional (1-D) space varying from bright to dark. The results of many previous psychophysical studies suggest, by contrast, that achromatic colors are represented as points in a color space composed of two or more perceptual dimensions.
View Article and Find Full Text PDFHow do induced brightness and darkness signals from local and remote surfaces interact to determine the final achromatic color percept of a target surface? An emerging theory of achromatic color perception posits that brightness and darkness percepts are computed by weighting and summing the induction signals generated at edges in a scene. This theory also characterizes how neighboring edges interact to modulate the gain of brightness and darkness signals induced from one another. Here we assess evidence for this edge integration theory by means of computational modeling and a psychophysical experiment.
View Article and Find Full Text PDFOn the one hand, contrast signals provide information about surface properties, such as reflectance, and patchy illumination conditions, such as shadows. On the other hand, processing of luminance signals may provide information about global light levels, such as the difference between sunny and cloudy days. We devised models of contrast and luminance processing, using principles of logarithmic signal coding and half-wave rectification.
View Article and Find Full Text PDF