Publications by authors named "Marcel Osterod"

In mammalian cells, 7,8-dihydro-8-oxoguanine (8-oxoG) and some other oxidative guanine modifications are removed from the DNA by base excision repair, which is initiated by OGG1 protein. We have tested whether this repair is inducible in mouse embryonic fibroblasts (MEFs), MCF-7 breast cancer cells and primary human fibroblasts by a pretreatment with the photosensitizer Ro19-8022 plus light, which generates predominantly 8-oxoG, or with methyl methanesulfonate (MMS), which generates alkylated bases and abasic sites (AP sites). The results indicate that the repair rate of the oxidative guanine modifications induced by the photosensitizer was not increased if a priming dose of the oxidative or alkylating agent was applied 6 or 18h prior to a challenging dose, although pretreatments with both agents resulted in two-fold elevated glutathione levels as an indication for an adaptive response.

View Article and Find Full Text PDF

The Cockayne syndrome B (CSB) gene product is involved in the repair of various types of base modifications in actively transcribed DNA sequences. To investigate its significance for the repair of endogenous oxidative DNA damage, homozygous csb(-/-)/ogg1(-/-) double knockout mice were generated. These combine the deficiency of CSB with that of OGG1, a gene coding for the mammalian repair glycosylase that initiates the base excision repair of 7,8-dihydro-8-oxoguanine (8-oxoG).

View Article and Find Full Text PDF