Following up on a proof of concept, this publication presents a new method for mixing mapping on falling liquid films. On falling liquid films, different surfaces, plain or structured, are common. Regarding mixing of different components, the surface has a significant effect on its capabilities and performance.
View Article and Find Full Text PDFTechnical liquid flow films are the basic arrangement for gas fluid transitions of all kinds and are the basis of many chemical processes, such as columns, evaporators, dryers, and different other kinds of fluid/fluid separation units. This publication presents a new method for molecule sensitive, non-contact, and marker-free localized concentration mapping in vertical falling films. Using Raman spectroscopy, no label or marker is needed for the detection of the local composition in liquid mixtures.
View Article and Find Full Text PDFTo meet the demands of the chemical and pharmaceutical process industry for a combination of high measurement accuracy, product selectivity, and low cost of ownership, the existing measurement and evaluation methods have to be further developed. This paper demonstrates the attempt to combine future Raman photometers with promising evaluation methods. As part of the investigations presented here, a new and easy-to-use evaluation method based on a self-learning algorithm is presented.
View Article and Find Full Text PDFThis paper provides an overview of how molecule-sensitive, spatially-resolved technologies can be applied for monitoring and measuring in microchannels. The principles of elastic light scattering, fluorescence, near-infrared, mid-infrared, and Raman imaging, as well as combination techniques, are briefly presented, and their advantages and disadvantages are explained. With optical methods, images can be acquired both scanning and simultaneously as a complete image.
View Article and Find Full Text PDF