Iron-based nanomaterials have high technological impacts on various pro-environmental applications, including wastewater treatment using the co-precipitation method. The purpose of this research was to identify the changes of iron nanomaterial's structure caused by the presence of selenium, a typical water contaminant, which might affect the removal when the iron co-precipitation method is used. Therefore, we have investigated the maturation of co-precipitated nanosized ferric oxyhydroxides under alkaline conditions and their thermal transformation into hematite in the presence of selenite and selenate with high concentrations.
View Article and Find Full Text PDFNatural ferric ochres that precipitate in streambeds at abandoned mining sites are natural scavengers of various metals and metalloids. Thus, their chemical and structural modification via microbial activity should be considered in evaluation of the risks emerging from probable spread of contamination at mining sites. Our results highlight the role of various aspergilli strains in this process via production of acidic metabolites that affect mobility and bioavailability of coprecipitated contaminants.
View Article and Find Full Text PDFIron-containing spontaneously precipitated ochreous sediments serve as natural scavengers of various migrating elements and in this way contribute to removal and immobilization of potentially hazardous elements especially from mine drainage outflows. On the other hand, presence of filamentous fungi in their surroundings triggers biotransformation and contributes to the mobility of these elements. Three groups of samples of spontaneously precipitated ochreous sediments from an abandoned antimony mine in Poproč, Slovakia were studied: as-collected, sterilized at 95 °C for 30 min, and exposed to incubation with filamentous fungus Aspergillus niger which is frequently found in soils.
View Article and Find Full Text PDFSpatially confined magnetic inhomogeneities were revealed by measuring nuclear forward scattering time spectra on the same sample in two different geometric arrangements. They differ by 180° rotation of the sample around one of the polarization axes. A basic theoretical description of this phenomenon and its relation to a spatial distribution of nuclei featuring different magnetic moments is provided.
View Article and Find Full Text PDFApplication of the so-called nuclear forward scattering (NFS) of synchrotron radiation is presented for the study of crystallization of metallic glasses. In this process, nanocrystalline alloys are formed. Using NFS, the transformation process can be directly observed during in-situ temperature experiments not only from the structural point of view, i.
View Article and Find Full Text PDFFerric oxyhydroxides are natural scavengers of antimony, thus, they contribute significantly to antimony immobilization in soils and sediments. Recent studies, however, usually omit microbial influence on geochemically stable antimony-ferric oxyhydroxide association. Therefore, we have evaluated fungal contribution to antimony mobility during static cultivation of common soil fungus Aspergillus niger in presence of ferric oxyhydroxides.
View Article and Find Full Text PDFAdding the humic acid coating to the nanoparticles of zinc oxide (ZnO-NP) may improve the properties necessary for their colloidal stability. To show how humic acid coating affects the properties of ZnO-NP, three differently sol-gel synthesized ZnO-NP were synthesized: pristine zinc oxide nanoparticles without coating (p-ZnO-NP) and humic acid coated zinc oxide nanoparticles at two different initial concentrations of 20 mg/L (HA20-ZnO-NP) and 200 mg/L (HA200-ZnO-NP) of humic acids in the starting solution. All ZnO-NP were found to be nanocrystals of mineral zincite exhibiting wurtzite crystal symmetry.
View Article and Find Full Text PDFWe demonstrate the use of two nuclear-based analytical methods that can follow the modifications of microstructural arrangement of iron-based metallic glasses (MGs). Despite their amorphous nature, the identification of hyperfine interactions unveils faint structural modifications. For this purpose, we have employed two techniques that utilize nuclear resonance among nuclear levels of a stable Fe isotope, namely Mössbauer spectrometry and nuclear forward scattering (NFS) of synchrotron radiation.
View Article and Find Full Text PDFIron is an essential element for fundamental cell functions and a catalyst for chemical reactions. Three samples extracted from the human spleen were investigated by scanning (SEM) and transmission electron microscopy (TEM), Mössbauer spectrometry (MS), and SQUID magnetometry. The sample with diagnosis of hemosiderosis (H) differs from that referring to hereditary spherocytosis and the reference sample.
View Article and Find Full Text PDFIdentification of unstable high-valent iron species in electron transfer reactions of ferrate(VI) (Fe(VI)O4(2-), Fe(VI)) has been an important challenge in advancing the understanding of the oxidative mechanisms of ferrates. This paper presents the first example of distinguishing various phases differing in the valence state of iron in the solid state reduction of Fe(VI) to Fe(III) oxides at 235 °C using hyperfine parameters, isomer shift and hyperfine magnetic field, obtained from nuclear forward scattering of synchrotron radiation (NFS). The NFS technique enables a fast data accumulation resulting in high time resolution of in situ experiments.
View Article and Find Full Text PDFEvolution of structure and local magnetic fields in (Fe(1-x)Co(x))76Mo8Cu1B15 (HITPERM) metallic glass ribbons with various amounts of Co (x = 0, 0.25, 0.5) were studied in situ using diffraction and nuclear forward scattering of synchrotron radiation.
View Article and Find Full Text PDFThe atomic structure of Ni-Pd nanoparticles has been studied using atomic pair distribution function (PDF) analysis of X-ray total scattering data and with transmission electron microscopy (TEM). Larger nanoparticles have PDFs corresponding to the bulk face-centered cubic packing. However, the smallest nanoparticles have PDFs that strongly resemble those obtained from bulk metallic glasses (BMGs).
View Article and Find Full Text PDF