Publications by authors named "Marcel Krueger"

Prognosis of glioblastoma patients is still poor despite multimodal therapy. The highly brain-infiltrating growth in concert with a pronounced therapy resistance particularly of mesenchymal glioblastoma stem-like cells (GSCs) has been proposed to contribute to therapy failure. Recently, we have shown that a mesenchymal-to-proneural mRNA signature of patient derived GSC-enriched (pGSC) cultures associates with in vitro radioresistance and gel invasion.

View Article and Find Full Text PDF

Purpose: Tumor hypoxia and other microenvironmental factors are key determinants of treatment resistance. Hypoxia positron emission tomography (PET) and functional magnetic resonance imaging (MRI) are established prognostic imaging modalities to identify radiation resistance in head-and-neck cancer (HNC). The aim of this preclinical study was to develop a multi-parametric imaging parameter specifically for focal radiotherapy (RT) dose escalation using HNC xenografts of different radiation sensitivities.

View Article and Find Full Text PDF

Antibodies targeting surface expressed disialoganglioside GD2 are increasingly used in neuroblastoma immunotherapy and might also have potential for use in radioimmunotherapy. As such targeted treatments might benefit from a dedicated theranostic approach, we studied the influence of radiolabeling on the binding characteristics of ch14.18 antibodies produced by Chinese hamster ovary (CHO) cells and evaluated the benefit of GD2-ImmunoPET as a potential tool for therapy planning.

View Article and Find Full Text PDF

Identification of prognostic or predictive molecular markers in glioblastoma resection specimens may lead to strategies for therapy stratification and personalized treatment planning. Here, we analyzed in primary glioblastoma stem cell (pGSC) cultures the mRNA abundances of seven stem cell (MSI1, Notch1, nestin, Sox2, Oct4, FABP7 and ALDH1A3), and three radioresistance or invasion markers (CXCR4, IK and BK ). From these abundances, an mRNA signature was deduced which describes the mesenchymal-to-proneural expression profile of an individual GSC culture.

View Article and Find Full Text PDF

Background: Limited knowledge of stem cell therapies` mechanisms of action hampers their sustainable implementation into the clinic. Specifically, the interactions of transplanted stem cells with the host vasculature and its implications for their therapeutic efficacy are not elucidated. We tested whether adhesion receptors and chemokine receptors on stem cells can be functionally modulated, and consequently if such modulation may substantially affect therapeutically relevant stem cell interactions with the host endothelium.

View Article and Find Full Text PDF

Background: Stem cells` (SC) functional heterogeneity and its poorly understood aetiology impedes clinical development of cell-based therapies in regenerative medicine and oncology. Recent studies suggest a strong correlation between the SC migration potential and their therapeutic efficacy in humans. Designating SC migration as a denominator of functional SC heterogeneity, we sought to identify highly migrating subpopulations within different SC classes and evaluate their therapeutic properties in comparison to the parental non-selected cells.

View Article and Find Full Text PDF

The inner clock of biological organisms plays a pivotal role and has strong effects on metabolic processes such as glucose consumption. Since the commonly used positron emission tomography (PET) tracer F-flourodeoxygucose (FDG) is a glucose analogue, it is not surprising that the FDG distribution in mice and humans has been shown to succumb to daily rhythms. In preclinical studies, the circadian rhythm of animals is often not considered, and studies are performed at different times of day.

View Article and Find Full Text PDF

Radiosynthesis of [1-C]acetate is well described in literature, but all syntheses either require adaptations in complex commercial synthesizers or rely on closed-source hardware and software control. Arduino microcontrollers are ideal for the compact, flexible, and inexpensive control of low-complexity hardware, making them particularly suited for radiochemistry where operation in space-limited shielded hot cells is mandatory. We established a [1-C]acetate radiosynthesis module for combination with a [C]MeI module available in almost every lab working with C.

View Article and Find Full Text PDF

Phenotypic heterogeneity is commonly observed in diseased tissue, specifically in tumors. Multimodal imaging technologies can reveal tissue heterogeneity noninvasively in vivo, enabling imaging-based profiling of receptors, metabolism, morphology, or function on a macroscopic scale. In contrast, in vitro multiomics, immunohistochemistry, or histology techniques accurately characterize these heterogeneities in the cellular and subcellular scales in a more comprehensive but ex vivo manner.

View Article and Find Full Text PDF
Article Synopsis
  • Acquired resistance to second generation BRAF inhibitors (like vemurafenib) significantly limits the effectiveness of targeted therapy in patients with malignant melanomas that have BRAF V600 mutations.
  • A key mechanism of this resistance involves the stabilization and nuclear translocation of β-catenin in roughly half of the analyzed resistant melanomas, which plays a critical role in mediating resistance.
  • Notably, β-catenin functions independently of the canonical Wnt-signaling pathway and collaborates with Stat3 to help melanoma cells maintain resistance to BRAF inhibitors.
View Article and Find Full Text PDF

Purpose: NHS-IL12 is an immunocytokine targeting necrotic tumour areas. IL12 shows anti-tumour activity. As local irradiation might induce additional necrosis in solid tumours, we aimed to evaluate the increase in intratumoural accumulation of NHS-IL12 after irradiation and correlate the findings with diffusion-weighted MRI studies in two xenograft models.

View Article and Find Full Text PDF

Purpose: Colorectal cancer is one of the most common forms of cancer, and the development of novel tools for detection and efficient treatment of metastases is needed. One promising approach is the use of radiolabeled antibodies for positron emission tomography (PET) imaging and radioimmunotherapy. Since carcinoembryonic antigen (CEA) is an important target in colorectal cancer, the CEA-specific M5A antibody has been extensively studied in subcutaneous xenograft models; however, the M5A antibody has not yet been tested in advanced models of liver metastases.

View Article and Find Full Text PDF