Binding of tissue-type plasminogen activator (tPA) to amyloid and denatured proteins is reported in a number of studies. The binding site has been mapped previously to the finger domain of tPA. In this study, tPA and truncated tPA constructs, lacking the finger domain, were tested for their ability to bind to Aβ and AIAPP amyloid-like fibrils.
View Article and Find Full Text PDFSurface plasmon resonance (SPR) is a powerful label-free diagnostic tool to study biomolecular interactions. However, one of the drawbacks of SPR is the lack of controlled immobilization of ligands on the sensor surface. We have developed a modular platform for the fast, reagent-free and site-specific immobilization of azide-containing ligands by strain-promoted cycloaddition onto a cyclooctyne-modified SPR sensor surface.
View Article and Find Full Text PDFSpleen tyrosine kinase (Syk) is essential for high affinity IgE receptor (FcεRI) mediated mast cell degranulation. Once FcεRI is stimulated, intracellular ITAM motifs of the receptor are diphosphorylated (dpITAM) and Syk is recruited to the receptor by binding of the Syk tandem SH2 domain to dpITAM, resulting in activation of Syk and, eventually, degranulation. To investigate intracellular effects of ITAM mimics, constructs were synthesized with ITAM mimics conjugated to different cell penetrating peptides, i.
View Article and Find Full Text PDFSurface plasmon resonance (SPR) is one of the leading tools in biomedical research. The challenge in its use is the controlled positioning of one of the components of an interaction on a carefully designed surface. Many attempts in interaction analysis fail due to the non-functional or unsuccessful immobilization of a reactant onto the complex matrix of that surface.
View Article and Find Full Text PDFSurface plasmon resonance (SPR) analysis is rather unique in that it allows assay of binding constants (affinity) and kinetic analysis of binding phenomena. This introductory chapter deals with some specific features that are relevant to many diverse applications. The role and impact of kinetics in biomolecular interactions is highlighted.
View Article and Find Full Text PDFThe Syk tandem Src homology 2 domain (Syk tSH2) constitutes a flexible protein module involved in the regulation of Syk kinase activity. The Syk tSH2 domain is assumed to function by adapting the distance between its two SH2 domains upon bivalent binding to diphosphotyrosine ligands. A thermodynamic and kinetic analysis of ligand binding was performed by using surface plasmon resonance (SPR).
View Article and Find Full Text PDFStructural flexibility plays a crucial role in protein function. To assess whether specific structural changes are associated with the binding of an immunoreceptor tyrosine-based activation motif (ITAM) to the tandem Src homology-2 domains (tSH2) of the spleen tyrosine kinase [EC 2.7.
View Article and Find Full Text PDFThermodynamic and kinetic studies of biomolecular interactions give insight into specificity of molecular recognition processes and advance rational drug design. Binding of phosphotyrosine (pY)-containing peptides to Src- and Grb2-SH2 domains was investigated using a surface plasmon resonance (SPR)-based method. This SPR assay yielded thermodynamic binding constants in solution, and the kinetic information contained in the SPR signal allowed kinetic analysis, which demonstrated distinct ways for pY ligands to interact with the SH2 domains.
View Article and Find Full Text PDFGrowth factor receptor-bound protein 2 (Grb2) is an extensively studied adaptor protein involved in cell signaling. Grb2 is a highly flexible protein composed of a single SH2 domain flanked by two SH3 domains. Here we report on the structural dynamic effects upon interaction of a phosphopeptide ligand derived from the recognition sequence of the Shc adaptor protein with (i) the isolated SH2 domain of Grb2 (Grb2 SH2) and (ii) the full-length Grb2 protein.
View Article and Find Full Text PDFA library of pentapeptides containing the sequence -Y-X-Y- based on rational design was screened with six different lectins. Sequences were identified that modulate galectin binding to its natural carbohydrate ligand. SPR showed inhibition values 2-3 times stronger than galactose and NMR studies suggested real carbohydrate mimicry.
View Article and Find Full Text PDFCyclic phosphopeptides were prepared using ring-closing metathesis followed by phosphorylation. These cyclic phosphopeptides were designed to interact with the SH2 domain of Grb2, which is a signal transduction protein of importance as a target for antiproliferative drug development. Binding of these peptides to the Grb2 SH2 domain was evaluated by a surface plasmon resonance assay.
View Article and Find Full Text PDFThe construction of rigid spacers composed of amino propynyl benzoic acid building blocks is described. These spacers were used to link two phosphopeptide ligand sites towards obtaining divalent ligands with a high affinity for Syk tandem SH2 domains, which are important in signal transduction. The spacer containing two of those rigid building blocks led to a ligand which was as active as the natural ligand, indicating that this building block can be used in the design and synthesis of high affinity divalent constructs that can successfully interfere with crucial protein-protein interactions.
View Article and Find Full Text PDFThe pH dependence of the affinity of a 11-mer phosphotyrosine (pY) peptide (EPQpYEEIPIYL-NH2) for the SH2 domain of the tyrosine kinase p56(lck) was investigated with surface plasmon resonance (SPR). From SPR competition experiments the affinity in solution was obtained. The pH dependence of the affinity in solution can be well described by a proton linkage model with a single pK(a) shift upon binding, from 6.
View Article and Find Full Text PDF