Publications by authors named "Marcel Houdelet"

Traditional breeding and molecular approaches have been used to develop tobacco varieties with reduced nicotine and secondary alkaloid levels. However, available low-alkaloid tobacco varieties have impaired leaf quality likely due to the metabolic consequences of nicotine biosynthesis downregulation. Recently, we found evidence that the unbalanced crosstalk between nicotine and polyamine pathways is involved in impaired leaf ripening of a low-alkaloid (LA) Burley 21 line having a mutation at the and loci, key biosynthetic regulators of nicotine biosynthesis.

View Article and Find Full Text PDF

The development of low-alkaloid (LA) tobacco varieties is an important target in the tobacco breeding industry. However, LA Burley 21 plants, in which the and loci controlling nicotine biosynthesis are deleted, are characterized by impaired leaf maturation that leads to poor leaf quality before and after curing. Polyamines are involved in key developmental, physiological, and metabolic processes in plants, and act as anti-senescence and anti-ripening regulators.

View Article and Find Full Text PDF

Increasing the productivity of crops is a major challenge in agricultural research. Given that photosynthetic carbon assimilation is necessary for plant growth, enhancing the efficiency of photosynthesis is one strategy to boost agricultural productivity. The authors attempted to increase the photosynthetic efficiency and biomass of tobacco plants by expressing individual components of the Chlamydomonas reinhardtii carbon concentration mechanism (CCM) and integrating them into the chloroplast.

View Article and Find Full Text PDF

Transient expression systems allow the rapid production of recombinant proteins in plants. Such systems can be scaled up to several hundred kilograms of biomass, making them suitable for the production of pharmaceutical proteins required at short notice, such as emergency vaccines. However, large-scale transient expression requires the production of recombinant Agrobacterium tumefaciens strains with the capacity for efficient gene transfer to plant cells.

View Article and Find Full Text PDF

Aflatoxin-producing fungi can contaminate plants and plant-derived products with carcinogenic secondary metabolites that present a risk to human and animal health. In this study, we investigated the effect of antimicrobial peptides on the major aflatoxigenic fungi Aspergillus flavus and A. parasiticus.

View Article and Find Full Text PDF

We have increased the productivity and yield of potato (Solanum tuberosum) by developing a novel method to enhance photosynthetic carbon fixation based on expression of a polyprotein (DEFp) comprising all three subunits (D, E and F) of Escherichia coli glycolate dehydrogenase (GlcDH). The engineered polyprotein retained the functionality of the native GlcDH complex when expressed in E. coli and was able to complement mutants deficient for the D, E and F subunits.

View Article and Find Full Text PDF