The Mre11 complex comprises Mre11, Rad50 and Nbs1 (Xrs2 in ). The core components, Mre11 and Rad50 are highly conserved, with readily identifiable orthologs in all clades of life, whereas Nbs1/Xrs2 are present only in eukaryotes. In eukaryotes, the complex is integral to the DNA damage response, acting in DNA double strand break (DSB) detection and repair, and the activation of DNA damage signaling.
View Article and Find Full Text PDFThe MRE11 complex (comprising MRE11, RAD50, and NBS1) is integral to the maintenance of genome stability. We previously showed that a hypomorphic mutant mouse strain ( ) was highly susceptible to oncogene-induced breast cancer. Here we used a mammary organoid system to examine which MRE11-dependent responses are tumor-suppressive.
View Article and Find Full Text PDFThe Mre11 complex (comprising Mre11, Rad50, Nbs1) is integral to the maintenance of genome stability. We previously showed that a hypomorphic mutant mouse strain ( ) was highly susceptible to oncogene induced breast cancer. Here we used a mammary organoid system to examine which Mre11 dependent responses are tumor suppressive.
View Article and Find Full Text PDFTelomere repeat containing RNAs (TERRAs) are a family of long non-coding RNAs transcribed from the subtelomeric regions of eukaryotic chromosomes. TERRA transcripts can form R-loops at chromosome ends; however the importance of these structures or the regulation of TERRA expression and retention in telomeric R-loops remain unclear. Here, we show that the RTEL1 (Regulator of Telomere Length 1) helicase influences the abundance and localization of TERRA in human cells.
View Article and Find Full Text PDFThe MRE11-RAD50-NBS1 complex plays a central role in response to DNA double-strand breaks. Here, we identify a patient with bone marrow failure and developmental defects caused by biallelic RAD50 mutations. One of the mutations creates a null allele, whereas the other (RAD50) leads to the loss of a single residue in the heptad repeats within the RAD50 coiled-coil domain.
View Article and Find Full Text PDFThe DNA damage response (DDR) comprises multiple functions that collectively preserve genomic integrity and suppress tumorigenesis. The Mre11 complex and ATM govern a major axis of the DDR and several lines of evidence implicate that axis in tumor suppression. Components of the Mre11 complex are mutated in approximately five percent of human cancers.
View Article and Find Full Text PDFTel1 is the ortholog of human ATM kinase and initiates a cell cycle checkpoint in response to dsDNA breaks (DSBs). Tel1 kinase is activated synergistically by naked dsDNA and the Mre11-Rad50-Xrs2 complex (MRX). A multisubunit protein complex, which is related to human shelterin, protects telomeres from being recognized as DSBs, thereby preventing a Tel1 checkpoint response.
View Article and Find Full Text PDFNon-homologous end joining (NHEJ) and homologous recombination (HR) are the two major pathways of DNA double-strand break (DSB) repair and both are highly conserved from yeast to mammals. Nej1 has a role in DNA end-tethering at a DSB, and the Mre11/Rad50/Xrs2 (MRX) complex is important for its recruitment to the break. Nej1 and Dna2-Sgs1 interact with the C-terminal end of Mre11, which also includes the region where Rad50 binds.
View Article and Find Full Text PDFThe Rad50 hook interface is crucial for assembly and various functions of the Mre11 complex. Previous analyses suggested that Rad50 molecules interact within (intracomplex) or between (intercomplex) dimeric complexes. In this study, we determined the structure of the human Rad50 hook and coiled-coil domains.
View Article and Find Full Text PDFRad50 contains a conserved Zn(2+) coordination domain (the Rad50 hook) that functions as a homodimerization interface. Hook ablation phenocopies Rad50 deficiency in all respects. Here, we focused on rad50 mutations flanking the Zn(2+)-coordinating hook cysteines.
View Article and Find Full Text PDFUnlabelled: Metastatic solid tumors are almost invariably fatal. Patients with disseminated small-cell cancers have a particularly unfavorable prognosis, with most succumbing to their disease within two years. Here, we report on the genetic and functional analysis of an outlier curative response of a patient with metastatic small-cell cancer to combined checkpoint kinase 1 (CHK1) inhibition and DNA-damaging chemotherapy.
View Article and Find Full Text PDFThe Mre11 complex (Mre11, Rad50, and Nbs1) is a central component of the DNA damage response (DDR), governing both double-strand break repair and DDR signaling. Rad50 contains a highly conserved Zn(2+)-dependent homodimerization interface, the Rad50 hook domain. Mutations that inactivate the hook domain produce a null phenotype.
View Article and Find Full Text PDFThe cohesin complex holds together newly replicated chromatids and is involved in diverse pathways that preserve genome integrity. We show that in budding yeast, cohesin is transiently recruited to active replication origins, and it spreads along DNA as forks progress. When DNA synthesis is impeded, cohesin accumulates at replication sites and is critical for the recovery of stalled forks.
View Article and Find Full Text PDFNat Struct Mol Biol
September 2011
The Mre11 complex (Mre11, Rad50 and Xrs2 in Saccharomyces cerevisiae) influences diverse functions in the DNA damage response. The complex comprises the globular DNA-binding domain and the Rad50 hook domain, which are linked by a long and extended Rad50 coiled-coil domain. In this study, we constructed rad50 alleles encoding truncations of the coiled-coil domain to determine which Mre11 complex functions required the full length of the coils.
View Article and Find Full Text PDFFEN-1 and XPG are members of the FEN-1 family of structure-specific nucleases, which share a conserved active site. FEN-1 plays a central role in DNA replication, whereas XPG is involved in nucleotide excision repair (NER). Both FEN-1 and XPG are active on flap structures, but only XPG cleaves bubble substrates.
View Article and Find Full Text PDFThe Mre11 complex (in Saccharomyces cerevisiae: Mre11, Rad50 and Xrs2) influences multiple facets of chromosome break metabolism. A conserved feature of the Mre11 complex is a zinc-coordinating motif in Rad50 called the Rad50 hook. We established a diploid yeast strain, rad50(hook), in which Rad50 is encoded in halves, one from each of the two RAD50 alleles, with the residues constituting the hook deleted.
View Article and Find Full Text PDFXPG has structural and catalytic roles in nucleotide excision repair (NER) and belongs to the FEN-1 family of structure-specific nucleases. XPG contains a stretch of over 600 amino acids termed the "spacer region" between the conserved N- and I-nuclease regions. Its role is unknown, and it is not similar to any known protein.
View Article and Find Full Text PDFXPG belongs to the Fen1 family of structure-specific nucleases and is responsible for the 3' endonucleolytic incision during mammalian nucleotide excision repair. In addition, it has ill-defined roles in the transcription-coupled repair of oxidative DNA damage and likely also in transcription that are independent of its nuclease activity. We have used DNA binding and footprinting assays with various substrates to gain insight into how XPG interacts with DNA.
View Article and Find Full Text PDF