CD4 T helper antigens are essential components of cancer vaccines, but the relevance of the source of these MHC class II-restricted antigens remains underexplored. To compare the effectiveness of tumor-specific versus tumor-unrelated helper antigens, we designed three DNA vaccines for the murine MC-38 colon carcinoma, encoding CD8 T cell neoantigens alone (noHELP) or in combination with either "universal" helper antigens (uniHELP) or helper neoantigens (neoHELP). Both types of helped vaccines increased the frequency of vaccine-induced CD8 T cells, and particularly uniHELP increased the fraction of KLRG1 and PD-1 effector cells.
View Article and Find Full Text PDFThe genetic circuits that allow cancer cells to evade immune killing via epithelial mesenchymal plasticity remain poorly understood. Here, we showed that mesenchymal-like (Mes) KPC3 pancreatic cancer cells were more resistant to cytotoxic T lymphocyte (CTL)-mediated killing than the parental epithelial-like (Epi) cells and used parallel genome-wide CRISPR screens to assess the molecular underpinnings of this difference. Core CTL-evasion genes (such as IFN-γ pathway components) were clearly evident in both types.
View Article and Find Full Text PDFTherapeutic cancer drug efficacy can be limited by insufficient tumor penetration, rapid clearance, systemic toxicity and (acquired) drug resistance. The poor therapeutic index due to inefficient drug penetration and rapid drug clearance and toxicity can be improved by using a liposomal platform. Drug resistance for instance against pemetrexed, can be reduced by combination with docetaxel.
View Article and Find Full Text PDFWe report an approach to identify tumor-specific CD4 T cell neo-epitopes of both mouse and human cancer cells by analysis of major histocompatibility complex (MHC) class II-eluted natural peptides. MHC class II-presented peptide sequences are identified by introducing the MHC class II transactivator (CIITA) in tumor cells that were originally MHC class II negative. CIITA expression facilitates cell-surface expression of MHC class II molecules and the appropriate peptide-loading machinery.
View Article and Find Full Text PDFUpconversion nanoparticles (UCNPs) represent a group of NPs that can convert near-infrared (NIR) light into ultraviolet and visible light, thus possess deep tissue penetration power with less background fluorescence noise interference, and do not induce damage to biological tissues. Due to their unique optical properties and possibility for surface modification, UCNPs can be exploited for concomitant antigen delivery into dendritic cells (DCs) and monitoring by molecular imaging. In this study, we focus on the development of a nano-delivery platform targeting DCs for immunotherapy and simultaneous imaging.
View Article and Find Full Text PDFPhotodynamic therapy (PDT) has shown impressive therapeutic effects on various types of cancers by reactive oxygen species (ROS) generation and induction of immune responses. However, under certain conditions, the immune responses induced by PDT are not always sufficient to eradicate the remaining tumor cells. On the other hand, the photosensitizer indocyanine green (ICG) can mediate PDT under near-infrared (NIR) illumination, thereby enhancing the penetration depth of the excitation light into the tumor.
View Article and Find Full Text PDFUnderstanding the mechanisms and impact of booster vaccinations are essential in the design and delivery of vaccination programs. Here we show that a three dose regimen of a synthetic peptide vaccine elicits an accruing CD8 T cell response against one SARS-CoV-2 Spike epitope. We see protection against lethal SARS-CoV-2 infection in the K18-hACE2 transgenic mouse model in the absence of neutralizing antibodies, but two dose approaches are insufficient to confer protection.
View Article and Find Full Text PDFProteolysis is fundamental to many biological processes. In the immune system, it underpins the activation of the adaptive immune response: degradation of antigenic material into short peptides and presentation thereof on major histocompatibility complexes, leads to activation of T-cells. This initiates the adaptive immune response against many pathogens.
View Article and Find Full Text PDFAutophagy has been reported to be involved in supporting antigen cross-presentation by dendritic cells (DCs). We have shown that DCs have the ability to store antigen for a prolonged time in endolysosomal compartments and thereby sustain MHCI antigen cross-presentation to CD8 T cells. In the current study, we investigated the role of autophagy in long-term antigen presentation.
View Article and Find Full Text PDFThe murine MC-38 colorectal cancer model is a commonly used model for cancer with high mutational burden, which is sensitive for immune checkpoint immunotherapy. We set out to analyze endogenous CD8 T cell responses to MC-38 neo-antigens in tumor-bearing mice and after anti-PD-L1 checkpoint therapy. Through combination of whole-exome sequencing analysis with mass spectrometry of MHC class I eluted peptides we could identify eight candidate epitopes.
View Article and Find Full Text PDFChemoimmunotherapy is an emerging combinatorial modality for the treatment of cancers resistant to common first-line therapies, such as chemotherapy and checkpoint blockade immunotherapy. We used biodegradable nanoparticles as delivery vehicles for local, slow and sustained release of doxorubicin, two immune adjuvants and one chemokine for the treatment of resistant solid tumors. Bio-compatible poly(lactic-co-glycolic acid)-PEG nanoparticles were synthesized in an oil/water emulsion, using a solvent evaporation-extraction method.
View Article and Find Full Text PDFBackground: Ligands for the Toll-like receptor (TLR) family can induce activation of cells of the innate immune system and are widely studied for their potential to enhance adaptive immunity. Conjugation of TLR2-ligand Pam3CSK4 to synthetic long peptides (SLPs) was shown to strongly enhance the induction of antitumor immunity. To further improve cancer vaccination, we have previously shown that the novel TLR2-L Amplivant (AV), a modified Pam3CSK4, potentiates the maturation effects on murine DCs.
View Article and Find Full Text PDFOncolytic reovirus administration has been well tolerated by cancer patients in clinical trials. However, its anti-cancer efficacy as a monotherapy remains to be augmented. We and others have previously demonstrated the feasibility of producing replication-competent reoviruses expressing a heterologous transgene.
View Article and Find Full Text PDFActivation of a cytotoxic T-cell is a complex multistep process, and tools to study the molecular events and their dynamics that result in T-cell activation in situ and in vivo are scarce. Here, we report the design and use of conditional epitopes for time-controlled T-cell activation in vivo. We show that trans-cyclooctene-protected SIINFEKL (with the lysine amine masked) is unable to elicit the T-cell response characteristic for the free SIINFEKL epitope.
View Article and Find Full Text PDFAn exclusive feature of dendritic cells (DCs) is their ability to cross-present exogenous antigens in MHC class I molecules. We analyzed the fate of protein antigen in antigen presenting cell (APC) subsets after uptake of naturally formed antigen-antibody complexes in vivo. We observed that murine splenic DC subsets were able to present antigen in vivo for at least a week.
View Article and Find Full Text PDFDendritic cells (DCs) are specialized in Ag engulfment via a wide variety of uptake receptors on their cell surface. In the present study we investigated Ag uptake and presentation of in vivo-formed Ag-Ab complexes by i.v.
View Article and Find Full Text PDFCancer vaccines are at present mostly based on tumor associated protein antigens but fail to elicit strong cell-mediated immunity in their free form. For protein-based vaccines, the main challenges to overcome are the delivery of sufficient proteins into the cytosol of dendritic cells (DCs) and processing by, and presentation through, the MHC class I pathway. Recently, we developed a cationic dextran nanogel in which a model antigen (ovalbumin, OVA) is reversibly conjugated via disulfide bonds to the nanogel network to enable redox-sensitive intracellular release.
View Article and Find Full Text PDFChemical conjugates comprising synthetic Toll-like receptor ligands (TLR-L) covalently bound to antigenic synthetic long peptides (SLP) are attractive vaccine modalities, which can induce robust CD8(+) T-cell immune responses. Previously, we have shown that the mechanism underlying the power of TLR-L SLP conjugates is improved delivery of the antigen together with a dendritic cell activation signal. In the present study, we have expanded the approach to tumor-specific CD4(+) as well as CD8(+) T-cell responses and in vivo studies in two nonrelated aggressive tumor models.
View Article and Find Full Text PDFFcγR ligation by Ag-Ab immune complexes (IC) not only mediates effective Ag uptake, but also strongly initiates dendritic cell (DC) maturation, a requirement for effective T cell activation. Besides the activating FcγRI, FcγRIII, and FcγRIV, the inhibitory FcγRIIb is expressed on DCs. It is unclear how the ratio between signals from the activating FcγR and the inhibitory FcγRIIb determines the outcome of FcγR ligation on DCs.
View Article and Find Full Text PDFIncreasing evidence suggests that antibodies can have stimulatory effects on T-cell immunity. However, the contribution of circulating antigen-specific antibodies on MHC class I cross-priming in vivo has not been conclusively established. Here, we defined the role of circulating antibodies in cross-presentation of antigen to CD8(+) T cells.
View Article and Find Full Text PDFThe formulation of plasmid DNA (pDNA) in cationic liposomes is a promising strategy to improve the potency of DNA vaccines. In this respect, physicochemical parameters such as liposome size may be important for their efficacy. The aim of the current study was to investigate the effect of vesicle size on the in vivo performance of liposomal pDNA vaccines after subcutaneous vaccination in mice.
View Article and Find Full Text PDFAg-IgG immune complexes (IC) are efficiently taken up, and Ag-derived peptides are subsequently processed and presented by APC. In vitro experiments indicate that IgG Fc Receptors (FcgammaR) facilitate the efficient uptake of IC by dendritic cells. Previous experiments showed that the cross-presentation of Ag-derived peptides after s.
View Article and Find Full Text PDFProfessional antigen-presenting cells (APC) are able to process and present exogenous antigen leading to the activation of T cells. Antigen-immunoglobulin (Ig)G complexes (IC) are much more efficiently processed and presented than soluble antigen. Dendritic cells (DC) are known for their ability to take up and process immune complex (IC) via FcgammaR, and they have been shown to play a crucial role in IC-processing onto major histocompatibility complex (MHC) class I as they contain a specialized cross-presenting transport system required for MHC class I antigen-processing.
View Article and Find Full Text PDF