Arbuscular mycorrhizal (AM) fungi not only play a crucial role in acquiring nutrients for plants but also serve as a habitat for soil microbes. Recent studies observed that AM fungal hyphae are colonized by specific bacterial communities. However, so far it has not been explored whether fungal hyphae and mycorrhizal networks also harbor specific communities of protists, a key group of microbes in the soil microbiome.
View Article and Find Full Text PDFHalophyte shrubs, prevalent in arid regions globally, create saline fertile islands under their canopy. This study investigates the soil microbial communities and their energy utilization strategies associated with tamarisk shrubs in arid ecosystems. Shotgun sequencing revealed that high salinity in tamarisk islands reduces functional gene alpha-diversity and relative abundance compared to bare soils.
View Article and Find Full Text PDFProtists, a crucial part of the soil food web, are increasingly acknowledged as significant influencers of nutrient cycling and plant performance in farmlands. While topographical and climatic factors are often considered to drive microbial communities on a continental scale, higher trophic levels like heterotrophic protists also rely on their food sources. In this context, bacterivores have received more attention than fungivores.
View Article and Find Full Text PDFInvestigating plant responses to climate change is key to develop suitable adaptation strategies. However, whether changes in land management can alleviate increasing drought threats to crops in the future is still unclear. We conducted a management × drought experiment with winter wheat (Triticum aestivum L.
View Article and Find Full Text PDFAgriculture contributes to a decline in local species diversity and to above- and below-ground biotic homogenization. Here, we conduct a continental survey using 1185 soil samples and compare microbial communities from natural ecosystems (forest, grassland, and wetland) with converted agricultural land. We combine our continental survey results with a global meta-analysis of available sequencing data that cover more than 2400 samples across six continents.
View Article and Find Full Text PDFArbuscular mycorrhizal fungi (AMF) form symbiotic associations with the majority of land plants and deliver a wide range of soil-based ecosystem services. Due to their conspicuous belowground lifestyle in a dark environment surrounded by soil particles, much is still to be learned about the influence of environmental (, physical) cues on spore germination, hyphal morphogenesis and anastomosis/hyphal healing mechanisms. To fill existing gaps in AMF knowledge, we developed a new microfluidic platform - the - to visualise the foraging behaviour of germinating and spores and confront asymbiotic hyphae with physical obstacles.
View Article and Find Full Text PDFMycorrhizal symbioses between plants and fungi are vital for the soil structure, nutrient cycling, plant diversity, and ecosystem sustainability. More than 250 000 plant species are associated with mycorrhizal fungi. Recent advances in genomics and related approaches have revolutionized our understanding of the biology and ecology of mycorrhizal associations.
View Article and Find Full Text PDFBackground: Plant microbiomes play crucial roles in nutrient cycling and plant growth, and are shaped by a complex interplay between plants, microbes, and the environment. The role of bacteria as mediators of the 400-million-year-old partnership between the majority of land plants and, arbuscular mycorrhizal (AM) fungi is still poorly understood. Here, we test whether AM hyphae-associated bacteria influence the success of the AM symbiosis.
View Article and Find Full Text PDFFactors regulating the diversity and composition of soil microbial communities include soil properties, land cover and climate. How these factors interact at large scale remains poorly investigated. Here, we used an extensive dataset including 715 locations from 24 European countries to investigate the interactive effects of climatic region, land cover and pH on soil bacteria and fungi.
View Article and Find Full Text PDFThe mycorrhizal symbiosis between fungi and plants is among the oldest, ubiquitous and most important interactions in terrestrial life on Earth. Carbon (C) transfer across a common mycorrhizal network (CMN) was demonstrated over half a century ago in the lab ( Reid & Woods, 1969), and later in the field ( Simard ., 1997a).
View Article and Find Full Text PDFSynthetic pesticides are widely applied in modern agriculture, where they are used against diseases, pests, and weeds to secure crop yield and quality. However, their intensive application has led to widespread contamination of the environment, including soils. Due to their inherent toxicity, they might pose a risk to soil health by causing harm to non-target organisms and disrupting ecosystem services in both agricultural and other exposed soils.
View Article and Find Full Text PDFAlternative solutions to mineral fertilizers and pesticides that reduce the environmental impact of agriculture are urgently needed. Arbuscular mycorrhizal fungi (AMF) can enhance plant nutrient uptake and reduce plant stress; yet, large-scale field inoculation trials with AMF are missing, and so far, results remain unpredictable. We conducted on-farm experiments in 54 fields in Switzerland and quantified the effects on maize growth.
View Article and Find Full Text PDFSoil and plant roots are colonized by highly complex and diverse communities of microbes. It has been proposed that bacteria and fungi have synergistic effects on litter decomposition, but experimental evidence supporting this claim is weak. In this study, we manipulated the composition of two microbial kingdoms (Bacteria and Fungi) in experimental microcosms.
View Article and Find Full Text PDFAgriculture is a major source of nutrient pollution, posing a threat to the earth system functioning. Factors determining the nutrient use efficiency of plant-soil systems need to be identified to develop strategies to reduce nutrient losses while ensuring crop productivity. The potential of soil biota to tighten nutrient cycles by improving plant nutrition and reducing soil nutrient losses is still poorly understood.
View Article and Find Full Text PDFGlacier retreat is a visible consequence of climate change worldwide. Although taxonomic change of the soil microbiomes in glacier forefields have been widely documented, how microbial genetic potential changes along succession is little known. Here, we used shotgun metagenomics to analyse whether the soil microbial genetic potential differed between four stages of soil development (SSD) sampled along three transects in the Damma glacier forefield (Switzerland).
View Article and Find Full Text PDFSoil is an immense habitat for diverse organisms across the tree of life, but just how many organisms live in soil is surprisingly unknown. Previous efforts to enumerate soil biodiversity consider only certain types of organisms (e.g.
View Article and Find Full Text PDFBackground: A major aim in plant microbiome research is determining the drivers of plant-associated microbial communities. While soil characteristics and host plant identity present key drivers of root microbiome composition, it is still unresolved whether the presence or absence of important plant root symbionts also determines overall microbiome composition. Arbuscular mycorrhizal fungi (AMF) and N-fixing rhizobia bacteria are widespread, beneficial root symbionts that significantly enhance plant nutrition, plant health, and root structure.
View Article and Find Full Text PDFFactors driving microbial community composition and diversity are well established but the relationship with microbial functioning is poorly understood, especially at large scales. We analysed microbial biodiversity metrics and distribution of potential functional groups along a gradient of increasing land-use perturbation, detecting over 79,000 bacterial and 25,000 fungal OTUs in 715 sites across 24 European countries. We found the lowest bacterial and fungal diversity in less-disturbed environments (woodlands) compared to grasslands and highly-disturbed environments (croplands).
View Article and Find Full Text PDFIncreasing the number of environmental stressors could decrease ecosystem functioning in soils. Yet this relationship has never been globally assessed outside laboratory experiments. Here, using two independent global standardized field surveys, and a range of natural and human factors, we test the relationship between the number of environmental stressors exceeding different critical thresholds and the maintenance of multiple ecosystem services across biomes.
View Article and Find Full Text PDF