Publications by authors named "Marcel Fuciman"

This work examines the influence of applied external voltage in bulk electrolysis on the excited-state properties of 8'-apo-β-carotenal in acetonitrile by steady-state and ultrafast time-resolved absorption spectroscopy. The data collected under bulk electrolysis were compared with those taken without applied voltage. The steady-state measurements showed that although intensity of the S -S absorption band varies with the applied voltage, the spectral position remain nearly constant.

View Article and Find Full Text PDF

The excited states of carotenoids have been a subject of numerous studies. While a majority of these reports target the excited state dynamics initiated by the excitation of the S state, the upper excited state(s) absorbing in the UV spectral region (denoted as S) has been only scarcely studied. Moreover, the relation between the S and S, the final state of the well-known S-S transition of carotenoids, remains unknown.

View Article and Find Full Text PDF

The functions of both (bacterio) chlorophylls and carotenoids in light-harvesting complexes have been extensively studied during the past decade, yet, the involvement of BChl a high-energy Soret band in the cascade of light-harvesting processes still remains a relatively unexplored topic. Here, we present transient absorption data recorded after excitation of the Soret band in the LH2 complex from Rhodoblastus acidophilus. Comparison of obtained data to those recorded after excitation of rhodopin glucoside and B800 BChl a suggests that no Soret-to-Car energy transfer pathway is active in LH2 complex.

View Article and Find Full Text PDF

We present the first examples of alkylated derivatives of the macropolyhedral boron hydride, -BH, which is the gain medium in the first borane laser. This new series of ten highly stable and colorless organic-inorganic hybrid clusters are capable of the conversion of UVA irradiation to blue light with fluorescence quantum yields of unity. This study gives a comprehensive description of their synthesis, isolation, and structural characterization together with a delineation of their photophysical properties using a combined theoretical and experimental approach.

View Article and Find Full Text PDF

Recently a new family of carotenoproteins, homologues of the N-terminal domain of the orange carotenoid protein (NTD-OCP), have been identified in cyanobacteria. These homologues are called helical carotenoid proteins (HCPs) as they are all predicted to maintain the all-helical structure of the NTD-OCP and to bind carotenoids. Here, HCP2 and HCP3 isolated from the cyanobacterium PCC 7601 were studied by ultrafast transient absorption spectroscopy to explore the excited-state dynamics of the bound carotenoid, canthaxanthin.

View Article and Find Full Text PDF

The keto-carotenoid deinoxanthin, which occurs in the UV-resistant bacterium Deinococcus radiodurans, has been investigated by ultrafast time-resolved spectroscopy techniques. We have explored the excited-state properties of deinoxanthin in solution and bound to the S-layer Deinoxanthin Binding Complex (SDBC), a protein complex important for UV resistance and thermostability of the organism. Binding of deinoxanthin to SDBC shifts the absorption spectrum to longer wavelengths, but excited-state dynamics remain unaffected.

View Article and Find Full Text PDF

To demonstrate the value of the multipulse method in revealing the nature of coupling between excited states and explore the environmental dependencies of lowest excited singlet state (S) and intramolecular charge transfer (ICT) state equilibration, we performed ultrafast transient absorption pump-dump-probe and pump-repump-probe spectroscopies on fucoxanthin in various solvent conditions. The effects of polarity, proticity, and temperature were tested in solvents methanol at 293 and 190 K, acetonitrile, and isopropanol. We show that manipulation of the kinetic traces can produce one trace reflecting the equilibration kinetics of the states, which reveals that lower polarity, proticity, and temperature delay S/ICT equilibration.

View Article and Find Full Text PDF

We have applied femtosecond transient absorption spectroscopy in pump-probe and pump-dump-probe regimes to study energy transfer between fucoxanthin and Chl a in fucoxanthin-Chl a complex from the pennate diatom Phaeodactylum tricornutum. Experiments were carried out at room temperature and 77 K to reveal temperature dependence of energy transfer. At both temperatures, the ultrafast (<100 fs) energy transfer channel from the fucoxanthin S state is active and is complemented by the second pathway via the combined S/ICT state.

View Article and Find Full Text PDF

We used ultrafast transient absorption spectroscopy to study excited-state dynamics of the keto-carotenoid fucoxanthin (Fx) and its two derivatives: 19'-butanoyloxyfucoxanthin (bFx) and 19'-hexanoyloxyfucoxanthin (hFx). These derivatives occur in some light-harvesting systems of photosynthetic microorganisms, and their presence is typically related to stress conditions. Even though the hexanoyl (butanoyl) moiety is not a part of the conjugated system of hFx (bFx), their absorption spectra in polar solvents exhibit more pronounced vibrational bands of the S state than for Fx.

View Article and Find Full Text PDF

The majority of life on Earth depends directly or indirectly on the sun as a source of energy. The initial step of photosynthesis is facilitated by light-harvesting complexes, which capture and transfer light energy into the reaction centers (RCs). Here, we analyzed the organization of photosynthetic (PS) complexes in the bacterium G.

View Article and Find Full Text PDF

Ultrafast transient absorption spectroscopy and single-wavelength anisotropy measurements were used to study the effect of isomerization on the excited-state properties of fucoxanthin in polar and nonpolar solvents. The excitation wavelengths were 477 nm for all-trans-fucoxanthin, and 333 and 477 nm for cis-fucoxanthin. All transient absorption spectra of the fucoxanthin isomers in polar solvents show intramolecular charge transfer (ICT) state features, typical for carbonyl carotenoids.

View Article and Find Full Text PDF

A quenching mechanism mediated by the orange carotenoid protein (OCP) is one of the ways cyanobacteria protect themselves against photooxidative stress. Here, we present a femtosecond spectroscopic study comparing OCP and RCP (red carotenoid protein) samples binding different carotenoids. We confirmed significant changes in carotenoid configuration upon OCP activation reported by Leverenz et al.

View Article and Find Full Text PDF

In order to estimate the possible structure of the unknown carbonyl carotenoid related to isofucoxanthin from Chromera velia denoted as isofucoxanthin-like carotenoid (Ifx-l), we employed steady-state and ultrafast time-resolved spectroscopic techniques to investigate spectroscopic properties of Ifx-l in various solvents. The results were compared with those measured for related carotenoids with known structure: fucoxanthin (Fx) and isofucoxanthin (Ifx). The experimental data were complemented by quantum chemistry calculations and molecular modeling.

View Article and Find Full Text PDF

Two carotenoids with aryl rings were studied by femtosecond transient absorption spectroscopy and theoretical computational methods, and the results were compared with those obtained from their nonaryl counterpart, β-carotene. Although isorenieratene has more conjugated C═C bonds than β-carotene, its effective conjugation length, Neff, is shorter than of β-carotene. This is evidenced by a longer S1 lifetime and higher S1 energy of isorenieratene compared to the values for β-carotene.

View Article and Find Full Text PDF

We report on energy transfer pathways in the main light-harvesting complex of photosynthetic relative of apicomplexan parasites, Chromera velia. This complex, denoted CLH, belongs to the family of FCP proteins and contains chlorophyll (Chl) a, violaxanthin, and the so far unidentified carbonyl carotenoid related to isofucoxanthin. The overall carotenoid-to-Chl-a energy transfer exhibits efficiency over 90% which is the largest among the FCP-like proteins studied so far.

View Article and Find Full Text PDF

The major light-harvesting complex of Amphidinium (A.) carterae, chlorophyll-a-chlorophyll-c 2-peridinin-protein complex (acpPC), was studied using ultrafast pump-probe spectroscopy at low temperature (60 K). An efficient peridinin-chlorophyll-a energy transfer was observed.

View Article and Find Full Text PDF

The excited-state dynamics, luminescence, and redox properties of a series of hexanuclear molybdenum cluster complexes, (nBu4N)2[Mo6X14] and (nBu4N)2[Mo6X8(CF3COO)6] (X = Cl, Br, or I), were investigated. Substitution of the apical halogen ligands for the trifluoroacetate ligands increased the oxidation potentials and induced a blue shift in the absorption and luminescence bands as well as a considerable increase in the luminescence quantum yields for heavy inner ligands. Time-resolved transient absorption measurements showed that the intersystem crossing from the excited singlet states is ultrafast with time constants ranging between <120 fs and 1.

View Article and Find Full Text PDF

Excited-state properties of monomeric and aggregated carbonyl carotenoid 8'-apo-β-carotenal were studied by means of femtosecond transient absorption spectroscopy. For monomers, the polarity-dependent behavior characteristic of carotenoids with conjugated carbonyl group was observed. In n-hexane the S(1) lifetime is 25 ps, but it is shortened to 8 ps in methanol.

View Article and Find Full Text PDF

Light-harvesting complexes ensure necessary flow of excitation energy into photosynthetic reaction centers. In the present work, transient absorption measurements were performed on LH1-RC complexes isolated from two aerobic anoxygenic phototrophs (AAPs), Roseobacter sp. COL2P containing the carotenoid spheroidenone, and Erythrobacter sp.

View Article and Find Full Text PDF

Plants are particularly prone to photo-oxidative damage caused by excess light. Photoprotection is essential for photosynthesis to proceed in oxygenic environments either by scavenging harmful reactive intermediates or preventing their accumulation to avoid photoinhibition. Carotenoids play a key role in protecting photosynthesis from the toxic effect of over-excitation; under excess light conditions, plants accumulate a specific carotenoid, zeaxanthin, that was shown to increase photoprotection.

View Article and Find Full Text PDF

The spectroscopic properties and energy transfer dynamics of the protein-bound chlorophylls and xanthophylls in monomeric, major LHCII complexes, and minor Lhcb complexes from genetically altered Arabidopsis thaliana plants have been investigated using both steady-state and time-resolved absorption and fluorescence spectroscopic methods. The pigment-protein complexes that were studied contain Chl a, Chl b, and variable amounts of the xanthophylls, zeaxanthin (Z), violaxanthin (V), neoxanthin (N), and lutein (L). The complexes were derived from mutants of plants denoted npq1 (NVL), npq2lut2 (Z), aba4npq1lut2 (V), aba4npq1 (VL), npq1lut2 (NV), and npq2 (LZ).

View Article and Find Full Text PDF

In carotenoids internal conversion between the allowed (S(2)) and forbidden (S(1)) excited states occurs on a sub-picosecond timescale; the involvement of an intermediate excited state(s) (S(x)) mediating the process is controversial. Here we use high time resolution (sub-20 fs) broadband (1.2-2.

View Article and Find Full Text PDF

The light-harvesting complex 2 from the thermophilic purple bacterium Thermochromatium tepidum was purified and studied by steady-state absorption and fluorescence, sub-nanosecond-time-resolved fluorescence and femtosecond time-resolved transient absorption spectroscopy. The measurements were performed at room temperature and at 10 K. The combination of both ultrafast and steady-state optical spectroscopy methods at ambient and cryogenic temperatures allowed the detailed study of carotenoid (Car)-to-bacteriochlorophyll (BChl) as well BChl-to-BChl excitation energy transfer in the complex.

View Article and Find Full Text PDF

Metallaborane compounds containing two adjacent metal atoms, [(PMe(2)Ph)(4)MM'B(10)H(10)] (where MM' = Pt(2), 1; PtPd, 7; Pd(2), 8), have been synthesized, and their propensity to sequester O(2), CO, and SO(2) and to then release them under pulsed and continuous irradiation are described. Only [(PMe(2)Ph)(4)Pt(2)B(10)H(10)], 1, undergoes reversible binding of O(2) to form [(PMe(2)Ph)(4)(O(2))Pt(2)B(10)H(10)] 3, but solutions of 1, 7, and 8 all quantitatively take up CO across their metal-metal vectors to form [(PMe(2)Ph)(4)(CO)Pt(2)B(10)H(10)] 4, [(PMe(2)Ph)(4)(CO)PtPdB(10)H(10)] 10, and [(PMe(2)Ph)(4)(CO)Pd(2)B(10)H(10)] 11, respectively. Crystallographically determined interatomic M-M distances and infrared CO stretching frequencies show that the CO molecule is bound progressively more weakly in the sequence {PtPt} > {PtPd} > {PdPd}.

View Article and Find Full Text PDF

The peridinin-chlorophyll a-protein (PCP) is a light-harvesting pigment-protein complex found in many species of marine algae. It contains the highly substituted carotenoid peridinin and chlorophyll a, which together facilitate the transfer of absorbed solar energy to the photosynthetic reaction center. Photoexcited peridinin exhibits unorthodox spectroscopic and kinetic behavior for a carotenoid, including a strong dependence of the S(1) excited singlet state lifetime on solvent environment.

View Article and Find Full Text PDF