Publications by authors named "Marcel F Kunrath"

The employ of sterilization processes are essential to investigate biomaterials aiming for experimental, preclinical, or clinical applications with biological tissues. However, responsive surface properties of biomaterials may be susceptible to sterilization processes, compromising important physio-chemical characteristics. For that reason, this in vitro study aimed to investigate the effects of three different processes for sterilization (humid heat under pressure, UVC-light exposure, and Gamma irradiation) on the major topographical properties of implant surfaces applied to dental bone-anchored implants and/or implant-abutments.

View Article and Find Full Text PDF

The purpose of this review was to evaluate the periodontal and peri-implant tissue responses to restorative approaches with and without cervical finish line on teeth and dental implants. An electronic search was performed in PubMed/MEDLINE, Embase, Cochrane Library, LILACS, Web of Science, and Scopus databases, and in the gray literature. Controlled clinical trials and prospective cohort studies were included.

View Article and Find Full Text PDF

Dental implant surfaces and their unique properties can interact with the surrounding oral tissues through epigenetic cues. The present scoping review provides current perspectives on surface modifications of dental implants, their impact on the osseointegration process, and the interaction between implant surface properties and epigenetics, also in peri-implant diseases. Findings of this review demonstrate the impact of innovative surface treatments on the epigenetic mechanisms of cells, showing promising results in the early stages of osseointegration.

View Article and Find Full Text PDF

Objectives: Nanotechnology is constantly advancing in dental science, progressing several features aimed at improving dental implants. An alternative for surface treatment of dental implants is electrochemical anodization, which may generate a nanotubular surface (TiO nanotubes) with antibacterial potential and osteoinductive features. This systematic review and meta-analysis aims to elucidate the possible antibacterial properties of the surface in question compared to the untreated titanium surface.

View Article and Find Full Text PDF

Aims: GBR membranes have various surface properties designed to elicit positive responses in regenerative clinical procedures; dental clinicians attempt to employ techniques to prevent the direct interaction of contaminated oral fluids with these biomaterials. However, saliva is uninterruptedly exhibited in oral surgical procedures applying GBR membranes, suggesting a persistent interaction with biomaterials and the surrounding oral tissues. This fundamental study aimed to investigate potential alterations in the physical, chemical, and key biological properties of membranes for guided bone regeneration (GBR) caused by isolated early interaction with human saliva.

View Article and Find Full Text PDF

Bone augmentation procedures are frequent today in implant patients, since an implant should be circumferentially anchored in bone at completion of bone healing to have a good long-term stability. The best documented surgical technique to achieve this goal is guided bone regeneration (GBR) utilizing barrier membranes in combination with bone fillers. This clinical review paper reflects 35 years of development and progress with GBR.

View Article and Find Full Text PDF

Objectives: Trans-mucosal platforms connecting the bone-anchored implants to the prosthetic teeth are essential for the success of oral rehabilitation in implant dentistry. This region promotes a challenging environment for the successfulness of dental components due to the transitional characteristics between soft and hard tissues, the presence of bacteria, and mechanical forces. This review explored the most current approaches to modify trans-mucosal components in terms of macro-design and surface properties.

View Article and Find Full Text PDF

Multifunctional surfaces may display the potential to accelerate and promote the healing process around dental implants. However, the initial cellular biocompatibility, molecular activity, and the release of functionalized molecules from these novel surfaces require extensive investigation for clinical use. Aiming to develop and compare innovative surfaces for application in dental implants, the present study utilized titanium disks, which were treated and divided into four groups: machined (Macro); acid-etched (Micro); anodized-hydrophilic surface (TNTs); and anodized surface coated with a rifampicin-loaded polymeric layer (poly(lactide-co-glycolide), PLGA) (TNTsRIMP).

View Article and Find Full Text PDF

Frontal darkened teeth have shown to be one of the most challenging treatments for esthetic dentistry in recent years. This case report, along with a 30-month follow-up, describes the application of a partial ceramic veneer, restricted to the mid-cervical third region, made in the upper left central incisor darkened by trauma. The procedure consisted of maintenance of the entire incisal face, as well as esthetic and morphological rehabilitation of the smile line with veneers and ultra-thin partial ceramic veneers.

View Article and Find Full Text PDF

Innovative dental biomaterials have been developed in order to stimulate higher biocompatibility and faster healing times using responsive surfaces for regenerative procedures. However, saliva is one of the fluids to interact with these biomaterials in the first instance. Studies have revealed significant negative effects on the biomaterials' properties, biocompatibility and bacterial colonisation after saliva contact.

View Article and Find Full Text PDF

Nanotechnology and drug-release biomaterials have been thoroughly explored in the last few years aiming to develop specialized clinical treatments. However, it is rare to find biomaterials associated with drug delivery properties in the current dental market for application in oral bone- and periodontal-related procedures. The gap between basic scientific evidence and translation to a commercial product remains wide.

View Article and Find Full Text PDF

Titanium (Ti) particles and ions have been investigated in recent years as important factors in the pathogenesis of peri-implantitis. However, their role in the pathogenesis is yet to be fully understood. A review of pertinent literature was performed in various databases to determine the current position of Ti particles and ions role in the pathogenesis of peri-implantitis.

View Article and Find Full Text PDF

The rehabilitation of severely worn teeth is a complex challenge for dental practitioners. There are many different types of dental materials and restorative techniques, and there is not a single way to achieve the desired result. This clinical report demonstrates a complete oral rehabilitation with composite resins when using an indirect application and direct techniques, with the support of the Lucia Jig technique, the Willis technique, and diagnostic waxing for the vertical dimension correction.

View Article and Find Full Text PDF

Hydrophilic and nanotextured surfaces for dental implants have been reported as relevant properties for early osseointegration. However, these surface characteristics are quite sensitive to oral interactions. Therefore, this pilot study aimed to investigate the superficial alterations caused on hydrophilic nanotubular surfaces after early human saliva interaction.

View Article and Find Full Text PDF

The presence of saliva in the oral environment is relevant for several essential health processes. However, the noncontrolled early saliva interaction with biomaterials manufactured for oral rehabilitation may generate alterations in the superficial properties causing negative biological outcomes. Therefore, the present review aimed to provide a compilation of all possible physical-chemical-biological changes caused by the early saliva interaction in dental implants and materials for oral regeneration.

View Article and Find Full Text PDF

Objectives: The present review article aimed to discuss the recent technologies employed for the development of dental implants, mainly regarding innovative surface treatments and alternative alloys, emphasizing the bio-tribocorrosion processes.

Methods: An electronic search applying specific MeSH terms was carried out in PubMed and Google Scholar databases to collect data until August 2021, considering basic, pre-clinical, clinical and review studies. The relevant articles (n=111), focused on innovative surface treatments for dental implants and their potential undesirable biological effects, were selected and explored.

View Article and Find Full Text PDF

Surface treatments are designed to promote modified implant surfaces with positive interactions with the surrounding living tissues. However, the inadvertent early contact of these surfaces with oral fluids during surgery may lead to undesired conditions affecting osseointegration. This study aimed to investigate the possible alterations in the physico-chemical properties of modified-surfaces caused by early saliva exposure.

View Article and Find Full Text PDF

Background: Dental components manufactured with zirconia (ZrO) represent a significant percentage of the implant prosthetic market in dentistry. However, during the last few years, we have observed robust clinical and pre-clinical scientific investigations on zirconia both as a prosthetic and an implantable material. At the same time, we have witnessed consistent technical and manufacturing updates with regards to the applications of zirconia which appear to gradually clarify points which until recently were not well understood.

View Article and Find Full Text PDF

The current focus of bioengineering for implant devices involves the development of functionalized surfaces, bioactive coatings, and metallic nanoparticles (mNPs) with a controlled release, together with strategies for the application of drugs , aiming at reducing infection rates, with an improvement of clinical outcomes. Controversially, negative aspects, such as cytotoxicity, mNP incorporation, bioaccumulation, acquired autoimmunity, and systemic toxicity have gained attention at the same status of importance, concerning the release of mNPs from these surface systems. The balance between the promising prospects of system releasing mNPs and the undesirable long-term adverse reactions require further investigation.

View Article and Find Full Text PDF

Nanostructured surfaces feature promising biological properties on biomaterials attracting large interest at basic research, implant industry development, and bioengineering applications. Thou, nanoscale interactions at a molecular and cellular level are not yet completely understood and its biological and clinical implications need to be further elucidated. As follows, the aim of this comprehensive review was to evaluate nanostructured surfaces at biomedical implants focusing on surface development, nanostructuration, and nanoengineered drug delivery systems that can induce specific cell interactions in all relevant aspects of biological, reparative, anti-bacterial, anti-inflammatory and clinical processes.

View Article and Find Full Text PDF

Micro and nanoscale changes allow the optimization of physico-chemical properties of titanium implant surfaces. Recently UV and plasma treatments have allowed surface hydrophilicity to take increased prominence; however, this beneficial effect is short-lived. The aim of this study is to investigate methodologies post-anodizing treatment to generate and maintain high surface hydrophilicity along with high biocompatibility.

View Article and Find Full Text PDF

Purpose: Surface treatments may significantly affect physical-chemical properties and surface biologic responses. This study aimed to investigate the influence of alterations in the physical-chemical properties of pure titanium with different surface topographies on biocompatibility and early microbiologic response.

Materials And Methods: Titanium disks were exposed to five different surface treatments created through acid etching and anodizing methods.

View Article and Find Full Text PDF

Objective: Surface alterations have been employed to enhance the osseointegration process in biomedical implants. However, these modifications may influence bacterial adhesion in different ways. Therefore, this study developed five different surfaces and evaluated the Staphylococcus epidermidis growth in early (1 h) and late (24 h) contact.

View Article and Find Full Text PDF

The fast evolution of surface treatments for biomedical implants and the concern with their contact with cells and microorganisms at early phases of bone healing has boosted the development of surface topographies presenting drug delivery potential for, among other features, bacterial growth inhibition without impairing cell adhesion. A diverse set of metal ions and nanoparticles (NPs) present antibacterial properties of their own, which can be applied to improve the implant local response to contamination. Considering the promising combination of nanostructured surfaces with antibacterial materials, this critical review describes a variety of antibacterial effects attributed to specific metals, ions and their combinations.

View Article and Find Full Text PDF