Publications by authors named "Marcel Deponte"

The evolution of oxygenic photosynthesis during the Archean (4-2.5 Ga) required the presence of complementary reducing pathways to maintain the cellular redox balance. While the timing of the evolution of superoxide dismutases (SODs), enzymes that convert superoxide to hydrogen peroxide and O, within bacteria and archaea is not resolved, the first SODs appearing in cyanobacteria contained copper and zinc in the reaction center (CuZnSOD).

View Article and Find Full Text PDF

Hydrogen peroxide (HO) is an important biological molecule, functioning both as a second messenger in cell signaling and, especially at higher concentrations, as a cause of cell damage. Cells harbor multiple enzymes that have peroxide reducing activity in vitro. However, the contribution of each of these enzymes towards peroxide scavenging in vivo is less clear.

View Article and Find Full Text PDF

Class I glutaredoxins reversibly reduce glutathione- and nonglutathione disulfides with the help of reduced glutathione (GSH) using either a monothiol mechanism or a dithiol mechanism. The monothiol mechanism exclusively involves a single glutathionylated active-site cysteinyl residue, whereas the dithiol mechanism requires the additional formation of an intramolecular disulfide bond between the active-site cysteinyl residue and a resolving cysteinyl residue. While the oxidation of glutaredoxins by glutathione disulfide substrates has been extensively characterized, the enzyme-substrate interactions for the reduction of S-glutathionylated glutaredoxins or intramolecular glutaredoxin disulfides are still poorly characterized.

View Article and Find Full Text PDF

Modular Cloning (MoClo) is based on libraries of standardized genetic parts that can be directionally assembled via Golden Gate cloning in one-pot reactions into transcription units and multigene constructs. Here, a team of bachelor students established a MoClo toolkit for the protist in the frame of the international Genetically Engineered Machine (iGEM) competition. Our modular toolkit is based on a domesticated version of a commercial LEXSY expression vector and comprises 34 genetic parts encoding various affinity tags, targeting signals as well as fluorescent and luminescent proteins.

View Article and Find Full Text PDF

Typical two-cysteine peroxiredoxins (2-Cys-PRXs) are HO-metabolizing enzymes whose activity relies on two cysteine residues. Protists of the family Trypanosomatidae invariably express one cytosolic 2-Cys-PRX (cPRX1). However, the Leishmaniinae sub-family features an additional isoform (cPRX2), almost identical to cPRX1, except for the lack of an elongated C-terminus with a Tyr-Phe (YF) motif.

View Article and Find Full Text PDF

Glutaredoxins catalyze the reduction of disulfides and are key players in redox metabolism and regulation. While important insights were gained regarding the reduction of glutathione disulfide substrates, the mechanism of non-glutathione disulfide reduction remains highly debated. Here we determined the rate constants for the individual redox reactions between PfGrx, a model glutaredoxin from Plasmodium falciparum, and redox-sensitive green fluorescent protein 2 (roGFP2), a model substrate and versatile tool for intracellular redox measurements.

View Article and Find Full Text PDF

Cu-thiosemicarbazones have been intensively investigated for their application in cancer therapy or as antimicrobials. Copper(II)-di-2-pyridylketone-4,4-dimethyl-thiosemicarbazone (Cu-Dp44mT) showed anticancer activity in the submicromolar concentration range in cell culture. The interaction of Cu-Dp44mT with thiols leading to their depletion or inhibition was proposed to be involved in this activity.

View Article and Find Full Text PDF
Article Synopsis
  • Redox status, which helps control proteins, is influenced by two systems: glutathione (GSH) and glutaredoxin (GRX), along with thioredoxin (TRX).
  • Scientists studied a specific protein (PpGRXC5) in moss to see how it affects other proteins when changes happen, like an increase in oxidation.
  • Even though PpGRXC5 helps keep protein balance, plants without it still grew normally and handled stress fine, showing that this protein's role might be more about fine-tuning rather than being super essential.
View Article and Find Full Text PDF

Dimedone and its derivates are used as selective probes for the nucleophilic detection of sulfenic acids in biological samples. Qualitative analyses suggested that dimedone also reacts with cyclic sulfenamides. Furthermore, under physiological conditions, dimedone must compete with the highly concentrated nucleophile glutathione.

View Article and Find Full Text PDF

The redox state of the host-parasite unit has been hypothesized to play a central role for the fitness of the intraerythrocytic blood stages of the human malaria parasite Plasmodium falciparum. In particular, hemoglobinopathies have been suggested to cause a more oxidizing environment, thereby protecting from severe malaria. Here we determined the redox potential of infected wild-type (hemoglobin AA) or sickle trait (hemoglobin AS) erythrocytes using parasite-encoded variants of the redox-sensitive green-fluorescent protein 2 (roGFP2).

View Article and Find Full Text PDF

Peroxiredoxins use a variety of thiols to rapidly reduce hydroperoxides and peroxynitrite. While the oxidation kinetics of peroxiredoxins have been studied in great detail, enzyme-specific differences regarding peroxiredoxin reduction and the overall rate-limiting step under physiological conditions often remain to be deciphered. The 1-Cys peroxiredoxin 5 homolog PfAOP from the malaria parasite Plasmodium falciparum is an established model enzyme for glutathione/glutaredoxin-dependent peroxiredoxins.

View Article and Find Full Text PDF

Decreased susceptibilities of the human malaria parasite Plasmodium falciparum towards the endoperoxide antimalarial artemisinin are linked to mutations of residue C580 of PfKelch13, a homologue of the redox sensor Keap1 and other vertebrate BTB-Kelch proteins. Here, we addressed whether mutations alter the artemisinin susceptibility by modifying the redox properties of PfKelch13 or by compromising its native fold or abundance. Using selection-linked integration and the glmS ribozyme, efficient down-regulation of PfKelch13 resulted in ring-stage survival rates around 40%.

View Article and Find Full Text PDF

Import and oxidative folding of proteins in the mitochondrial intermembrane space differ among eukaryotic lineages. While opisthokonts such as yeast rely on the receptor and oxidoreductase Mia40 in combination with the Mia40:cytochrome oxidoreductase Erv, kinetoplastid parasites and other Excavata/Discoba lack Mia40 but have a functional Erv homologue. Whether excavate Erv homologues rely on a Mia40 replacement or directly interact with imported protein substrates remains controversial.

View Article and Find Full Text PDF

The thioredoxin fold superfamily is highly diverse and contains many enzymatically active glutathione-dependent thiol-disulfide oxidoreductases, for example glutaredoxins and protein disulfide isomerases. However, many thioredoxin fold proteins remain completely uncharacterized, their cellular function is unknown, and it is unclear if they have a redox-dependent enzymatic activity with glutathione or not. Investigation of enzymatic activity traditionally involved time-consuming in vitro characterization of recombinant proteins, limiting the capacity to study novel mechanisms and structure-function relationships.

View Article and Find Full Text PDF

Leishmania parasites include important pathogens and model organisms and are even used for the production of recombinant proteins. However, functional genomics and the characterization of essential genes are often limited in Leishmania because of low-throughput technologies for gene disruption or tagging and the absence of components for RNA interference. Here, we tested the T7 RNA polymerase-dependent CRISPR-Cas9 system by Beneke et al.

View Article and Find Full Text PDF

Glutaredoxins are small proteins of the thioredoxin superfamily that are present throughout life. Most glutaredoxins fall into two major subfamilies. Class I glutaredoxins are glutathione-dependent thiol-disulfide oxidoreductases whilst class II glutaredoxins coordinate Fe-S clusters.

View Article and Find Full Text PDF

Class I glutaredoxins are enzymatically active, glutathione-dependent oxidoreductases, whilst class II glutaredoxins are typically enzymatically inactive, Fe-S cluster-binding proteins. Enzymatically active glutaredoxins harbor both a glutathione-scaffold site for reacting with glutathionylated disulfide substrates and a glutathione-activator site for reacting with reduced glutathione. Here, using yeast ScGrx7 as a model protein, we comprehensively identified and characterized key residues from four distinct protein regions, as well as the covalently bound glutathione moiety, and quantified their contribution to both interaction sites.

View Article and Find Full Text PDF

Hydrogen peroxide (H O ) plays important roles in cellular signaling, yet nonetheless is toxic at higher concentrations. Surprisingly, the mechanism(s) of cellular H O toxicity remain poorly understood. Here, we reveal an important role for mitochondrial 1-Cys peroxiredoxin from budding yeast, Prx1, in regulating H O -induced cell death.

View Article and Find Full Text PDF

Peroxiredoxins efficiently remove hydroperoxides and peroxynitrite in pro- and eukaryotes. However, isoforms of one subfamily of peroxiredoxins, the so-called Prx6-type enzymes, usually have very low activities in standard peroxidase assays in vitro. In contrast to other peroxiredoxins, Prx6 homologues share a conserved histidyl residue at the bottom of the active site.

View Article and Find Full Text PDF

The enzymes glyoxalase 1 and 2 (Glo1 and Glo2) are found in most eukaryotes and catalyze the glutathione-dependent conversion of 2-oxoaldehydes to 2-hydroxycarboxylic acids. Four glyoxalases are encoded in the genome of the malaria parasite , the cytosolic enzymes PfGlo1 and PfcGlo2, the apicoplast enzyme PftGlo2, and an inactive Glo1-like protein that also carries an apicoplast-targeting sequence. Inhibition or knockout of the glyoxalases was hypothesized to lead to an accumulation of 2-oxoaldehydes and advanced glycation end-products (AGE) in the host-parasite unit and to result in parasite death.

View Article and Find Full Text PDF

Mia40/CHCHD4 and Erv1/ALR are essential for oxidative protein folding in the mitochondrial intermembrane space of yeast and mammals. In contrast, many protists, including important apicomplexan and kinetoplastid parasites, lack Mia40. Furthermore, the Erv homolog of the model parasite Leishmania tarentolae (LtErv) was shown to be incompatible with Saccharomyces cerevisiae Mia40 (ScMia40).

View Article and Find Full Text PDF

Significance: Genetically encoded hydrogen peroxide (HO) sensors, based on fusions between thiol peroxidases and redox-sensitive green fluorescent protein 2 (roGFP2), have dramatically broadened the available "toolbox" for monitoring cellular HO changes. Recent Advances: Recently developed peroxiredoxin-based probes such as roGFP2-Tsa2ΔC offer considerably improved HO sensitivity compared with previously available genetically encoded sensors and now permit dynamic, real-time, monitoring of changes in endogenous HO levels.

Critical Issues: The correct understanding and interpretation of probe read-outs is crucial for their meaningful use.

View Article and Find Full Text PDF

Redox-sensitive green fluorescent protein 2 (roGFP2) is a valuable tool for redox measurements in living cells. Here, we demonstrate that roGFP2 can also be used to gain mechanistic insights into redox catalysis in vivo. In vitro enzyme properties such as the rate-limiting reduction of wild type and mutant forms of the model peroxiredoxin PfAOP are shown to correlate with the ratiometrically measured degree of oxidation of corresponding roGFP2 fusion proteins.

View Article and Find Full Text PDF

Artemisinins are the current mainstay of malaria chemotherapy. Their exact mode of action is an ongoing matter of debate, and several factors have recently been reported to affect an early stage of artemisinin resistance of the most important human malaria parasite Plasmodium falciparum. Here, we identified a locus on chromosome 7 that affects the artemisinin susceptibility of P.

View Article and Find Full Text PDF

Significance: Glutathione metabolism is comparable to a jigsaw puzzle with too many pieces. It is supposed to comprise (i) the reduction of disulfides, hydroperoxides, sulfenic acids, and nitrosothiols, (ii) the detoxification of aldehydes, xenobiotics, and heavy metals, and (iii) the synthesis of eicosanoids, steroids, and iron-sulfur clusters. In addition, glutathione affects oxidative protein folding and redox signaling.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: