Publications by authors named "Marcel De Gooyer"

The TSH receptor (TSHR) on orbital fibroblasts (OF) is a proposed target of the autoimmune attack in Graves' ophthalmopathy. In the present study, we tested whether the novel low-molecular-weight (LMW) TSHR antagonist Org-274179-0 inhibits cAMP production induced by rhTSH, Graves' disease IgG (GD-IgG), or M22 (a potent human monoclonal TSHR stimulating antibody) in cultured and differentiated OF from Graves' ophthalmopathy patients. cAMP production significantly increased after incubation either with 10 mU/ml rhTSH (3-fold; P ≤ 0.

View Article and Find Full Text PDF

Background And Purpose: Graves' disease (GD) is an autoimmune disease in which the thyroid is overactive, producing excessive amounts of thyroid hormones, caused by thyroid-stimulating hormone (TSH) receptor-stimulating immunoglobulins (TSIs). Many GD patients also suffer from thyroid eye disease (Graves' ophthalmopathy or GO), as TSIs also activate TSH receptors in orbital tissue. We recently developed low molecular weight (LMW) TSH receptor antagonists as a novel therapeutic strategy for the treatment of GD and GO.

View Article and Find Full Text PDF

The biosynthesis of the mineralocorticoid hormone aldosterone involves a multistep hydroxylation of 11-deoxycorticosterone at the 11- and 18-positions, resulting in the formation of corticosterone and 18-hydroxycorticosterone, the final precursor of aldosterone. Two members of the cytochrome P450 11B family, CYP11B1 and CYP11B2, are known to catalyze these 11- and 18-hydroxylations, however, only CYP11B2 can oxidize 18-hydroxycorticosterone to aldosterone. It is unknown what sequence of hydroxylations leads to the formation of 18-hydroxycorticosterone.

View Article and Find Full Text PDF

Background: Both expression of the thyrotropin receptor (TSHR) and the production of hyaluronan (HA) by orbital fibroblasts (OF) have been proposed to be implicated in the pathogenesis of Graves' ophthalmopathy (GO). HA is synthesized by three types of HA synthase. We hypothesized that TSHR activation by recombinant human TSH (rhTSH) and TSHR-stimulating Graves' disease immunoglobulins (GD-IgGs) via induced cyclic adenosine monophosphate (cAMP) signaling increases HA synthesis in differentiated OF from GO patients.

View Article and Find Full Text PDF

Background: Orbital fibroblasts are involved in the pathogenesis of Graves' ophthalmopathy (GO) by producing hyaluronan (HA), synthesized by three types of hyaluronan synthases (HAS1, HAS2, and HAS3). Thyrotropin receptors (TSHR) expressed in orbital fibroblasts activate the cyclic adenosine monophosphate (cAMP) pathway. Only sparse data are available at present supporting a role for TSHR activation in the regulation of HA in GO orbital fibroblasts.

View Article and Find Full Text PDF

Reducing aldosterone action is beneficial in various major diseases such as heart failure. Currently, this is achieved with mineralocorticoid receptor antagonists, however, aldosterone synthase (CYP11B2) inhibitors may offer a promising alternative. In this study, we used three-dimensional modeling of CYP11B2 to model the binding modes of the natural substrate 18-hydroxycorticosterone and the recently published CYP11B2 inhibitor R-fadrozole as a rational guide to design 44 structurally simple and achiral 1-benzyl-1H-imidazoles.

View Article and Find Full Text PDF

Reversal of cardiac fibrosis is a major determinant of the salutary effects of mineralocorticoid receptor antagonists in heart failure. Recently, R-fadrozole was coined as an aldosterone biosynthesis inhibitor, offering an appealing alternative to mineralocorticoid receptor antagonists to block aldosterone action. The present study aimed to evaluate the effects of R- and S-fadrozole on plasma aldosterone and urinary aldosterone excretion rate and to compare their effectiveness vs.

View Article and Find Full Text PDF

Aldosterone is synthesised by aldosterone synthase (CYP11B2). CYP11B2 has a highly homologous isoform, steroid 11beta-hydroxylase (CYP11B1), which is responsible for the biosynthesis of aldosterone precursors and glucocorticoids. To investigate aldosterone biosynthesis and facilitate the search for selective CYP11B2 inhibitors, we constructed three-dimensional models for CYP11B1 and CYP11B2 for both human and rat.

View Article and Find Full Text PDF

To exclude that aromatization plays a role in the estrogenic activity of tibolone, we studied the effect tibolone and metabolites on the aromatization of androstenedione and the aromatization of tibolone and its metabolites to 7alpha-methyl-17alpha-ethynylestradiol (7alpha-MEE) by human recombinant aromatase. Testosterone (T), 17alpha-methyltestosterone (MT), 19-nortestosterone (Nan), 7alpha-methyl-19-nortestosterone (MENT) and norethisterone (NET) were used as reference compounds. Sensitive in vitro bioassays with steroid receptors were used to monitor the generation of product and the reduction of substrate.

View Article and Find Full Text PDF

A series of MENT esters (3-71) was designed, prepared and tested to study the structure-activity relationship (SAR) of the hydrolysis rate with human liver microsomes of these prodrugs. Compounds were obtained covering a wide range of metabolic stability. The results are useful for the proper selection of prodrugs for different pharmaceutical formulations to deliver the potent and prostate-sparing androgen MENT.

View Article and Find Full Text PDF

The receptor profiles and in vivo activity of tibolone, and its primary metabolites, Delta(4)-isomer, and 3alpha- and 3beta-hydroxytibolone, were studied and compared to those of structurally related compounds. The Delta(4)-isomer was the strongest binder and activator of the progesterone receptor (PR); tibolone was 10 times weaker in binding and half as potent in transactivation of PR; 3alpha- and 3beta-hydroxytibolone did not bind or activate PR. In rabbits oral tibolone produced a minor progestagenic effect in the endometrium, whereas co-administration of tibolone and the anti-estrogen ICI 164,384 unmasked tibolone's progestagenic effect.

View Article and Find Full Text PDF