Publications by authors named "Marcel Ciobanu"

Climate change and land-use intensification are threatening soil communities and ecosystem functions. Understanding the combined effects of climate change and land use is crucial for predicting future impacts on soil biodiversity and ecosystem functioning in agroecosystems. Here, we used a field experiment to quantify the combined effects of climate change (warming and altered precipitation patterns) and land use (agricultural type and management intensity) on soil food webs across nematodes, micro-, and macroarthropods.

View Article and Find Full Text PDF

Ecosystem functioning depends on biodiversity at multiple trophic levels, yet relationships between multitrophic diversity and ecosystem multifunctionality have been poorly explored, with studies often focusing on individual trophic levels and functions and on specific ecosystem types. Here, we show that plant diversity can affect ecosystem functioning both directly and by affecting other trophic levels. Using data on 13 trophic groups and 13 ecosystem functions from two large biodiversity experiments-one representing temperate grasslands and the other subtropical forests-we found that plant diversity increases multifunctionality through elevated multitrophic diversity.

View Article and Find Full Text PDF
Article Synopsis
  • The current land management practices are jeopardizing the essential functions of ecosystems, which are crucial for human health and welfare.
  • This study evaluates the relationship between the functionality of agroecosystems in Central Germany and factors like land use and climate through a comprehensive analysis involving various stakeholders' preferences.
  • Results indicate that intensive farming typically reduces ecological multifunctionality, while sustainable practices yield significantly higher economic benefits, thereby suggesting a shift towards incentivizing sustainable land management for improved outcomes for both nature and society.
View Article and Find Full Text PDF

Artificial light at night (ALAN) is increasing worldwide, but its effects on the soil system have not yet been investigated. We tested the influence of experimental manipulation of ALAN on two taxa of soil communities (microorganisms and soil nematodes) and three aspects of soil functioning (soil basal respiration, soil microbial biomass and carbon use efficiency) over four and a half months in a highly controlled Ecotron facility. We show that during peak plant biomass, increasing ALAN reduced plant biomass and was also associated with decreased soil water content.

View Article and Find Full Text PDF

Human activities cause substantial changes in biodiversity. Despite ongoing concern about the implications of invertebrate decline, few empirical studies have examined the ecosystem consequences of invertebrate biomass loss. Here, we test the responses of six ecosystem services informed by 30 above- and belowground ecosystem variables to three levels of aboveground (i.

View Article and Find Full Text PDF

Land-use intensification represents one major threat to the diversity and functioning of terrestrial ecosystems. In the face of concurrent climate change, concerns are growing about the ability of intensively managed agroecosystems to ensure stable food provisioning, as they may be particularly vulnerable to climate extreme-induced harvest losses and pest outbreaks. Extensively managed systems, in contrast, were shown to mitigate climate change based on plant diversity-mediated effects, such as higher functional redundancy or asynchrony of species.

View Article and Find Full Text PDF

Loss of plant diversity has an impact on ecosystems worldwide, but we lack a mechanistic understanding of how this loss may influence below-ground biota and ecosystem functions across contrasting ecosystems in the long term. We used the longest running biodiversity manipulation experiment across contrasting ecosystems in existence to explore the below-ground consequences of 19 years of plant functional group removals for each of 30 contrasting forested lake islands in northern Sweden. We found that, against expectations, the effects of plant removals on the communities of key groups of soil organisms (bacteria, fungi and nematodes), and organic matter quality and soil ecosystem functioning (decomposition and microbial activity) were relatively similar among islands that varied greatly in productivity and soil fertility.

View Article and Find Full Text PDF

Anthropogenic global change alters the activity and functional composition of soil communities that are responsible for crucial ecosystem functions and services. Two of the most pervasive global change drivers are drought and nutrient enrichment. However, the responses of soil organisms to interacting global change drivers remain widely unknown.

View Article and Find Full Text PDF

Understanding how loss of biodiversity affects ecosystem functioning, and thus the delivery of ecosystem goods and services, has become increasingly necessary in a changing world. Considerable recent attention has focused on predicting how biodiversity loss simultaneously impacts multiple ecosystem functions (that is, ecosystem multifunctionality), but the ways in which these effects vary across ecosystems remain unclear. Here, we report the results of two 19-year plant diversity manipulation experiments, each established across a strong environmental gradient.

View Article and Find Full Text PDF

Climate warming is predicted to alter the structure, stability, and functioning of food webs1-5. Yet, despite the importance of soil food webs for energy and nutrient turnover in terrestrial ecosystems, warming effects on these food webs-particularly in combination with other global change drivers-are largely unknown. Here, we present results from two complementary field experiments testing the interactive effects of warming with forest canopy disturbance and drought on energy fluxes in boreal-temperate ecotonal forest soil food webs.

View Article and Find Full Text PDF

Climate warming is predicted to alter species interactions, which could potentially lead to extinction events. However, there is an ongoing debate whether the effects of warming on biodiversity may be moderated by biodiversity itself. We tested warming effects on soil nematodes, one of the most diverse and abundant metazoans in terrestrial ecosystems, along a gradient of environmental complexity created by a gradient of plant species richness.

View Article and Find Full Text PDF

The magnitude and frequency of extreme weather events are predicted to increase in the future due to ongoing climate change. In particular, floods and droughts resulting from climate change are thought to alter the ecosystem functions and stability. However, knowledge of the effects of these weather events on soil fauna is scarce, although they are key towards functioning of terrestrial ecosystems.

View Article and Find Full Text PDF

The percentage compositions of soil herbivorous, bacterivorous and fungivorous nematodes in forests, grasslands and scrubs in Romania was analysed. Percentages of nematode abundance, biomass and metabolic footprint methods were used to evaluate the patterns and relative size of herbivory, bacterial- and fungal-mediated channels in organic and mineral soil horizons. Patterns and magnitudes of herbivore, bacterivore and fungivore energy pathways differed for a given ecosystem type and soil depth according to the method used.

View Article and Find Full Text PDF

The identity and taxonomy of the genus Crassolabium are discussed based on examination of material of C. australe, its type species and its comparison with Iberian species of close genera. The existence of refractive masses (thickenings) at the inner core of lateral lips, the most distinctive diagnostic feature of Crassolabium, is considered to be of minor taxonomical significance because of its interspecific and even intraspecific variability.

View Article and Find Full Text PDF