Publications by authors named "Marcel Babin"

Phytoplankton and sea ice algae are traditionally considered to be the main primary producers in the Arctic Ocean. In this Perspective, we explore the importance of benthic primary producers (BPPs) encompassing microalgae, macroalgae, and seagrasses, which represent a poorly quantified source of Arctic marine primary production. Despite scarce observations, models predict that BPPs are widespread, colonizing ~3 million km of the extensive Arctic coastal and shelf seas.

View Article and Find Full Text PDF

Diatoms, the main eukaryotic phytoplankton of the polar marine regions, are essential for the maintenance of food chains specific to Arctic and Antarctic ecosystems, and are experiencing major disturbances under current climate change. As such, it is fundamental to understand the physiological mechanisms and associated molecular basis of their endurance during the long polar night. Here, using the polar diatom Fragilariopsis cylindrus, we report an integrative analysis combining transcriptomic, microscopic and biochemical approaches to shed light on the strategies used to survive the polar night.

View Article and Find Full Text PDF

The Arctic Ocean (AO) is the most river-influenced ocean. Located at the land-sea interface wherein phytoplankton blooms are common, Arctic coastal waterbodies are among the most affected regions by climate change. Given phytoplankton are critical for energy transfer supporting marine food webs, accurate estimation of chlorophyll a concentration (Chl), which is frequently used as a proxy of phytoplankton biomass, is critical for improving our knowledge of the Arctic marine ecosystem and its response to the ongoing climate change.

View Article and Find Full Text PDF
Article Synopsis
  • Polar microalgae, like the Arctic diatom Chaetoceros neogracilis, face significant challenges due to cold temperatures and fluctuating light conditions, which impact their growth and enzyme efficiency.
  • This study found that C. neogracilis can adapt to different light levels and temperatures, displaying high levels of Rubisco, low re-oxidation of fixed carbon, and alternative electron transport pathways to sustain energy without relying heavily on organic carbon.
  • These adaptations contribute to efficient growth in extreme environments, indicating that polar microalgae have unique mechanisms that differ from temperate species in how they manage photosynthesis and carbon fixation.
View Article and Find Full Text PDF

Carotenoid xanthophyll pigments are receiving growing interest in various industrial fields due to their broad and diverse bioactive and health beneficial properties. Fucoxanthin (Fx) and the inter-convertible couple diadinoxanthin-diatoxanthin (Ddx+Dtx) are acknowledged as some of the most promising xanthophylls; they are mainly synthesized by diatoms (Bacillariophyta). While temperate strains of diatoms have been widely investigated, recent years showed a growing interest in using polar strains, which are better adapted to the natural growth conditions of Nordic countries.

View Article and Find Full Text PDF

Whereas DNA viruses are known to be abundant, diverse, and commonly key ecosystem players, RNA viruses are insufficiently studied outside disease settings. In this study, we analyzed ≈28 terabases of Global Ocean RNA sequences to expand Earth's RNA virus catalogs and their taxonomy, investigate their evolutionary origins, and assess their marine biogeography from pole to pole. Using new approaches to optimize discovery and classification, we identified RNA viruses that necessitate substantive revisions of taxonomy (doubling phyla and adding >50% new classes) and evolutionary understanding.

View Article and Find Full Text PDF

At high latitudes, the polar night poses a great challenge to photosynthetic organisms that must survive up to six months without light. Numerous studies have already shed light on the physiological changes involved in the acclimation of microalgae to prolonged darkness and subsequent re-illumination. However, these studies have never considered inter-individual variability because they have mainly been conducted with bulk measurements.

View Article and Find Full Text PDF

Marine plankton form complex communities of interacting organisms at the base of the food web, which sustain oceanic biogeochemical cycles and help regulate climate. Although global surveys are starting to reveal ecological drivers underlying planktonic community structure and predicted climate change responses, it is unclear how community-scale species interactions will be affected by climate change. Here, we leveraged Oceans sampling to infer a global ocean cross-domain plankton co-occurrence network-the community interactome-and used niche modeling to assess its vulnerabilities to environmental change.

View Article and Find Full Text PDF

The organic carbon produced in the ocean's surface by phytoplankton is either passed through the food web or exported to the ocean interior as marine snow. The rate and efficiency of such vertical export strongly depend on the size, structure and shape of individual particles, but apart from size, other morphological properties are still not quantitatively monitored. With the growing number of in situ imaging technologies, there is now a great possibility to analyze the morphology of individual marine snow.

View Article and Find Full Text PDF

In the framework of the GreenEdge Project (whose the general objective is to understand the dynamic of the phytoplankton spring bloom in Arctic Ocean), lipid composition and viability and stress state of bacteria were monitored in sea ice and suspended particulate matter (SPM) samples collected in 2016 along a transect from sea ice to open water in Baffin Bay (Arctic Ocean). Lipid analyses confirmed the dominance of diatoms in the bottommost layer of ice and suggested (i) the presence of a strong proportion of micro-zooplankton in SPM samples collected at the western ice covered St 403 and St 409 and (ii) a high proportion of macro-zooplankton (copepods) in SPM samples collected at the eastern ice covered St 413 and open water St 418. The use of the propidium monoazide (PMA) method allowed to show a high bacterial mortality in sea ice and in SPM material collected in shallower waters at St 409 and St 418.

View Article and Find Full Text PDF

It is widely believed that during winter and spring, Arctic marine phytoplankton cannot grow until sea ice and snow cover start melting and transmit sufficient irradiance, but there is little observational evidence for that paradigm. To explore the life of phytoplankton during and after the polar night, we used robotic ice-avoiding profiling floats to measure ocean optics and phytoplankton characteristics continuously through two annual cycles in Baffin Bay, an Arctic sea that is covered by ice for 7 months a year. We demonstrate that net phytoplankton growth occurred even under 100% ice cover as early as February and that it resulted at least partly from photosynthesis.

View Article and Find Full Text PDF

The spaceborne CALIOP lidar, initially designed for atmospheric measurements, was recently used to retrieve the particulate backscattering coefficient (b) in ocean subsurface layers. However, extensive field evaluation of CALIOP estimates was never conducted due to the scarcity of in situ data. Here, year-round and basin-wide data from Biogeochemical Argo floats (BGC Argo) were used to evaluate CALIOP estimates in the North Atlantic.

View Article and Find Full Text PDF

The ocean is home to myriad small planktonic organisms that underpin the functioning of marine ecosystems. However, their spatial patterns of diversity and the underlying drivers remain poorly known, precluding projections of their responses to global changes. Here we investigate the latitudinal gradients and global predictors of plankton diversity across archaea, bacteria, eukaryotes, and major virus clades using both molecular and imaging data from Tara Oceans.

View Article and Find Full Text PDF
Article Synopsis
  • Ocean microbial communities play a crucial role in influencing the planet's biogeochemistry, food webs, and climate, yet there's limited understanding of their global transcriptome variations.
  • A comprehensive dataset of 187 metatranscriptomes and 370 metagenomes collected from 126 sampling stations worldwide has been established, highlighting 47 million genes for studying community-level transcriptomes across different ocean depths.
  • The study reveals that gene expression changes impacting community transcriptomes vary with environmental conditions, notably finding lower gene expression contributions in polar regions, suggesting that community composition may be more affected by ocean warming than gene regulation.
View Article and Find Full Text PDF

Xanthophyll cycle-related nonphotochemical quenching (NPQ), which is present in most photoautotrophs, allows dissipation of excess light energy. Xanthophyll cycle-related NPQ depends principally on xanthophyll cycle pigments composition and their effective involvement in NPQ. Xanthophyll cycle-related NPQ is tightly controlled by environmental conditions in a species-/strain-specific manner.

View Article and Find Full Text PDF

There is a growing need for operational oceanographic predictions in both the Arctic and Antarctic polar regions. In the former, this is driven by a declining ice cover accompanied by an increase in maritime traffic and exploitation of marine resources. Oceanographic predictions in the Antarctic are also important, both to support Antarctic operations and also to help elucidate processes governing sea ice and ice shelf stability.

View Article and Find Full Text PDF

Dimethylsulfide (DMS), a gas produced by marine microbial food webs, promotes aerosol formation in pristine atmospheres, altering cloud radiative forcing and precipitation. Recent studies suggest that DMS controls aerosol formation in the summertime Arctic atmosphere and call for an assessment of pan-Arctic DMS emission (EDMS) in a context of dramatic ecosystem changes. Using a remote sensing algorithm, we show that summertime EDMS from ice-free waters increased at a mean rate of 13.

View Article and Find Full Text PDF

Microbes drive most ecosystems and are modulated by viruses that impact their lifespan, gene flow, and metabolic outputs. However, ecosystem-level impacts of viral community diversity remain difficult to assess due to classification issues and few reference genomes. Here, we establish an ∼12-fold expanded global ocean DNA virome dataset of 195,728 viral populations, now including the Arctic Ocean, and validate that these populations form discrete genotypic clusters.

View Article and Find Full Text PDF

Oceanic gateways are sensitive to climate driven processes. By connecting oceans, they have a global influence on marine biological production and biogeochemical cycles. The furthest north of these gateways is Nares Strait at the top of the North Water between Greenland and Ellesmere Island (Canada).

View Article and Find Full Text PDF

In this study, we report on the performance of satellite-based photosynthetically available radiation (PAR) algorithms used in published oceanic primary production models. The performance of these algorithms was evaluated using buoy observations under clear and cloudy skies, and for the particular case of low sun angles typically encountered at high latitudes or at moderate latitudes in winter. The PAR models consisted of (i) the standard one from the NASA-Ocean Biology Processing Group (OBPG), (ii) the Gregg and Carder (GC) semi-analytical clear-sky model, and (iii) look-up-tables based on the Santa Barbara DISORT atmospheric radiative transfer (SBDART) model.

View Article and Find Full Text PDF

The Arctic Ocean and its surrounding shelf seas are warming much faster than the global average, which potentially opens up new distribution areas for temperate-origin marine phytoplankton. Using over three decades of continuous satellite observations, we show that increased inflow and temperature of Atlantic waters in the Barents Sea resulted in a striking poleward shift in the distribution of blooms of Emiliania huxleyi, a marine calcifying phytoplankton species. This species' blooms are typically associated with temperate waters and have expanded north to 76°N, five degrees further north of its first bloom occurrence in 1989.

View Article and Find Full Text PDF

Photolysis is a major removal pathway for the biogenic gas dimethylsulfide (DMS) in the surface ocean. Here we tested the hypothesis that apparent quantum yields (AQY) for DMS photolysis varied according to the quantity and quality of its photosensitizers, chiefly chromophoric dissolved organic matter (CDOM) and nitrate. AQY compiled from the literature and unpublished studies ranged across 3 orders of magnitude at the 330 nm reference wavelength.

View Article and Find Full Text PDF

The relative skill of 21 regional and global biogeochemical models was assessed in terms of how well the models reproduced observed net primary productivity (NPP) and environmental variables such as nitrate concentration (NO), mixed layer depth (MLD), euphotic layer depth (Z), and sea ice concentration, by comparing results against a newly updated, quality-controlled in situ NPP database for the Arctic Ocean (1959-2011). The models broadly captured the spatial features of integrated NPP (iNPP) on a pan-Arctic scale. Most models underestimated iNPP by varying degrees in spite of overestimating surface NO, MLD, and Z throughout the regions.

View Article and Find Full Text PDF

We investigated 32 net primary productivity (NPP) models by assessing skills to reproduce integrated NPP in the Arctic Ocean. The models were provided with two sources each of surface chlorophyll- concentration (chlorophyll), photosynthetically available radiation (PAR), sea surface temperature (SST), and mixed-layer depth (MLD). The models were most sensitive to uncertainties in surface chlorophyll, generally performing better with in situ chlorophyll than with satellite-derived values.

View Article and Find Full Text PDF