Glioblastoma multiforme (GBM), a highly aggressive tumor type with a dismal survival rate, has a poor outcome which is at least partly attributed to the crosstalk between cancer cells and cells from the tumor microenvironment such as astrocytes and microglia. We aimed to decipher the effect of these cells on GBM progression and on cell-based therapies using 3D co-cultures. Co-culturing of glioblastoma cells with patient-derived astrocytes or microglia or both formed dense and heterogeneous spheroids.
View Article and Find Full Text PDFThe rapid developments in biofabrication, in particular 3D bioprinting, in the recent years have facilitated the need for novel biomaterials that aim to replicate the target tissue in great detail. The presence of endotoxins in these biomaterials is often an overlooked problem. In pre-clinical 3D in vitro models, endotoxins can have significant influence on cell behavior and credibility of the model.
View Article and Find Full Text PDFFibrotic tumors, such as pancreatic ductal adenocarcinoma (PDAC), are characterized for high desmoplastic reaction, which results in high intra-tumoral solid stress leading to the compression of blood vessels. These microarchitectural alterations cause loss of blood flow and poor intra-tumoral delivery of therapeutics. Currently, there is a lack of relevant in vitro models capable of replicating these mechanical characteristics and to test anti-desmoplastic compounds.
View Article and Find Full Text PDFWith the severe acute respiratory syndrome coronavirus (SARS-CoV) in 2002, the middle east respiratory syndrome CoV (MERS-CoV) in 2012 and the recently discovered SARS-CoV-2 in December 2019, the 21st first century has so far faced the outbreak of three major coronaviruses (CoVs). In particular, SARS-CoV-2 spread rapidly over the globe affecting nearly 25.000.
View Article and Find Full Text PDFOver the last decades, the fabrication of 3D tissues has become commonplace in tissue engineering and regenerative medicine. However, conventional 3D biofabrication techniques such as scaffolding, microengineering, and fiber and cell sheet engineering are limited in their capacity to fabricate complex tissue constructs with the required precision and controllability that is needed to replicate biologically relevant tissues. To this end, 3D bioprinting offers great versatility to fabricate biomimetic, volumetric tissues that are structurally and functionally relevant.
View Article and Find Full Text PDFGlioblastoma-associated macrophages (GAMs) play a crucial role in the progression and invasiveness of glioblastoma multiforme (GBM); however, the exact crosstalk between GAMs and glioblastoma cells is not fully understood. Furthermore, there is a lack of relevant in vitro models to mimic their interactions. Here, novel 3D-bioprinted mini-brains consisting of glioblastoma cells and macrophages are presented as tool to study the interactions between these two cell types and to test therapeutics that target this interaction.
View Article and Find Full Text PDF