Publications by authors named "Marcantonio D"

We present the results of a search for the b→dℓ^{+}ℓ^{-} flavor-changing neutral-current rare decays B^{+,0}→(η,ω,π^{+,0},ρ^{+,0})e^{+}e^{-} and B^{+,0}→(η,ω,π^{0},ρ^{+})μ^{+}μ^{-} using a 711  fb^{-1} data sample that contains 772×10^{6}  BB[over ¯] events. The data were collected at the ϒ(4S) resonance with the Belle detector at the KEKB asymmetric-energy e^{+}e^{-} collider. We find no evidence for signal and set upper limits on branching fractions at the 90% confidence level in the range (3.

View Article and Find Full Text PDF

We measure the tau-to-light-lepton ratio of inclusive B-meson branching fractions R(X_{τ/ℓ})≡B(B→Xτν)/B(B→Xℓν), where ℓ indicates an electron or muon, and thereby test the universality of charged-current weak interactions. We select events that have one fully reconstructed B meson and a charged lepton candidate from 189  fb^{-1} of electron-positron collision data collected with the Belle II detector. We find R(X_{τ/ℓ})=0.

View Article and Find Full Text PDF

Immune checkpoint inhibitors block the interaction between a receptor on one cell and its ligand on another cell, thus preventing the transduction of an immunosuppressive signal. While inhibition of the receptor-ligand interaction is key to the pharmacological activity of these drugs, it can be technically challenging to measure these intercellular interactions directly. Instead, target engagement (or receptor occupancy) is commonly measured, but may not always be an accurate predictor of receptor-ligand inhibition, and can be misleading when used to inform clinical dose projections for this class of drugs.

View Article and Find Full Text PDF

The role of polyunsaturated fatty acid (PUFA) biosynthesis in acute myeloid leukemia (AML) remains largely undefined. A comparative expression analysis of 35 genes encoding fatty acid biosynthesis enzymes showed that fatty acid desaturase 1 (FADS1) was highly expressed across multiple AML subtypes relative to healthy controls and that elevated FADS1 expression correlates with worse overall AML patient survival. Functionally, shRNA-mediated inhibition of FADS1 reduced AML cell growth in vitro and significantly delayed leukemia onset in an AML mouse model.

View Article and Find Full Text PDF

Repair of DNA damage is essential for the maintenance of genome stability and cell viability. DNA double strand breaks (DSBs) constitute a toxic class of DNA lesion and multiple cellular pathways exist to mediate their repair. Robust and titratable assays of cellular DSB repair (DSBR) are important to functionally interrogate the integrity and efficiency of these mechanisms in disease models as well as in response to genetic or pharmacological perturbations.

View Article and Find Full Text PDF

We present the first comprehensive tests of the universality of the light leptons in the angular distributions of semileptonic B^{0}-meson decays to charged spin-1 charmed mesons. We measure five angular-asymmetry observables as functions of the decay recoil that are sensitive to lepton-universality-violating contributions. We use events where one neutral B is fully reconstructed in ϒ(4S)→BB[over ¯] decays in data corresponding to 189  fb^{-1} integrated luminosity from electron-positron collisions collected with the Belle II detector.

View Article and Find Full Text PDF

We measure the lifetime of the D_{s}^{+} meson using a data sample of 207  fb^{-1} collected by the Belle II experiment running at the SuperKEKB asymmetric-energy e^{+}e^{-} collider. The lifetime is determined by fitting the decay-time distribution of a sample of 116×10^{3} D_{s}^{+}→ϕπ^{+} decays. Our result is τ_{D_{s}^{+}}=(499.

View Article and Find Full Text PDF

We report the first search for a nonstandard-model resonance decaying into τ pairs in e^{+}e^{-}→μ^{+}μ^{-}τ^{+}τ^{-} events in the 3.6-10  GeV/c^{2} mass range. We use a 62.

View Article and Find Full Text PDF

We report a measurement of the CP-violating parameters C and S in B^{0}→K_{S}^{0}π^{0} decays at Belle II using a sample of 387×10^{6}  BB[over ¯] events recorded in e^{+}e^{-} collisions at a center-of-mass energy corresponding to the ϒ(4S) resonance. These parameters are determined by fitting the proper decay-time distribution of a sample of 415 signal events. We obtain C=-0.

View Article and Find Full Text PDF

Early assessment of dosing requirements should be an integral part of developability assessments for a discovery program. If a very high dose is required to achieve the desired pharmacological effect, it may not be clinically feasible or commercially desirable to develop the biotherapeutic for the selected target unless extra measures are taken to develop a high concentration formulation or maximize yield during manufacturing. A quantitative understanding of the impact of target selection, biotherapeutic format, and optimal drug properties on potential dosing requirements to achieve efficacy can affect many early decisions.

View Article and Find Full Text PDF

T-cell engager (TCE) molecules activate the immune system and direct it to kill tumor cells. The key mechanism of action of TCEs is to crosslink CD3 on T cells and tumor associated antigens (TAAs) on tumor cells. The formation of this trimolecular complex (i.

View Article and Find Full Text PDF

The application of model-informed drug discovery and development (MID3) approaches in the early stages of drug discovery can help determine feasibility of drugging a target, prioritize between targets, or define optimal drug properties for a target product profile (TPP). However, applying MID3 in early discovery can be challenging due to the lack of pharmacokinetic (PK) and pharmacodynamic (PD) data at this stage. Early Feasibility Assessment (EFA) is the application of mechanistic PKPD models, built from first principles, and parameterized by data that is readily available early in drug discovery to make effective dose predictions.

View Article and Find Full Text PDF
Article Synopsis
  • * TET2 mutations lead to lower levels of BRCA1 and LIG4, impairing DNA repair processes and making these cells more reliant on PARP1 for survival against DNA damage, hence they are sensitive to PARP inhibitors.
  • * In contrast, DNMT3A mutations promote traditional DNA repair methods, making DNMT3A-deficient cells resistant to PARP inhibitors, which highlights potential therapeutic strategies for targeting these mutations.
View Article and Find Full Text PDF

The SAGA coactivator complex is essential for eukaryotic transcription and comprises four distinct modules, one of which contains the ubiquitin hydrolase USP22. In yeast, the USP22 ortholog deubiquitylates H2B, resulting in Pol II Ser2 phosphorylation and subsequent transcriptional elongation. In contrast to this H2B-associated role in transcription, we report here that human USP22 contributes to the early stages of stimulus-responsive transcription, where USP22 is required for pre-initiation complex (PIC) stability.

View Article and Find Full Text PDF

Metabolic reprogramming is a common feature of many human cancers, including acute myeloid leukemia (AML). However, the upstream regulators that promote AML metabolic reprogramming and the benefits conferred to leukemia cells by these metabolic changes remain largely unknown. We report that the transcription factor ATF3 coordinates serine and nucleotide metabolism to maintain cell cycling, survival, and the differentiation blockade in AML.

View Article and Find Full Text PDF

KRAS is a small GTPase family protein that relays extracellular growth signals to cell nucleus. KRAS mutations lead to constitutive proliferation signaling and are prevalent across human cancers. ASP2453 is a novel, highly potent, and selective inhibitor of KRAS .

View Article and Find Full Text PDF

BRCA1 promotes the DNA end resection and RAD51 loading steps of homologous recombination (HR). Whether these functions can be uncoupled, and whether mutant proteins retaining partial activity can complement one another, is unclear and could affect the severity of BRCA1-associated Fanconi anemia (FA). Here we generated a Brca1 mouse with a coiled-coil (CC) domain deletion.

View Article and Find Full Text PDF

We present a flow cytometric approach for analyzing mitochondrial ROS in various live bone marrow (BM)-derived stem and progenitor cell populations from healthy mice as well as mice with AML driven by MLL-AF9. Specifically, we describe a two-step cell staining process, whereby healthy or leukemia BM cells are first stained with a fluorogenic dye that detects mitochondrial superoxides, followed by staining with fluorochrome-linked monoclonal antibodies that are used to distinguish various healthy and malignant hematopoietic progenitor populations. We also provide a strategy for acquiring and analyzing the samples by flow cytometry.

View Article and Find Full Text PDF

Objectives: To determine whether uncemented implants would provide similar outcomes while avoiding the complications associated with cement in the treatment of elderly patients with proximal humerus fractures (PHFs) with primary reverse total shoulder arthroplasty (RTSA).

Design: Case series.

Setting: A single Level I trauma center.

View Article and Find Full Text PDF

Many cases of AML are associated with mutational activation of receptor tyrosine kinases (RTKs) such as FLT3. However, RTK inhibitors have limited clinical efficacy as single agents, indicating that AML is driven by concomitant activation of different signaling molecules. We used a functional genomic approach to identify RET, encoding an RTK, as an essential gene in multiple subtypes of AML, and observed that AML cells show activation of RET signaling via ARTN/GFRA3 and NRTN/GFRA2 ligand/co-receptor complexes.

View Article and Find Full Text PDF

PARP1 is required for the maintenance of MLL-AF9 leukemias.PARP1 inhibitors enhance the therapeutic effect of cytotoxic drugs against MLL-AF9 leukemias.

View Article and Find Full Text PDF

The purpose of this study was to compare reverse total shoulder arthroplasty (RTSA) outcomes in normal weight, overweight, and obese patients. A RTSA outcomes registry was reviewed for rotator cuff-deficient patients with a minimum 2-year follow-up. Fractures, rheumatoid arthritis, and revisions were excluded.

View Article and Find Full Text PDF

The intracellular redox environment of acute myeloid leukemia (AML) cells is often highly oxidized compared to healthy hematopoietic progenitors and this is purported to contribute to disease pathogenesis. However, the redox regulators that allow AML cell survival in this oxidized environment remain largely unknown. Utilizing several chemical and genetically-encoded redox sensing probes across multiple human and mouse models of AML, we evaluated the role of the serine/threonine kinase PKC-epsilon (PKCε) in intracellular redox biology, cell survival and disease progression.

View Article and Find Full Text PDF

Quiescent and proliferating leukemia cells accumulate highly lethal DNA double-strand breaks that are repaired by 2 major mechanisms: BRCA-dependent homologous recombination and DNA-dependent protein kinase-mediated (DNA-PK-mediated) nonhomologous end-joining, whereas DNA repair pathways mediated by poly(ADP)ribose polymerase 1 (PARP1) serve as backups. Here we have designed a personalized medicine approach called gene expression and mutation analysis (GEMA) to identify BRCA- and DNA-PK-deficient leukemias either directly, using reverse transcription-quantitative PCR, microarrays, and flow cytometry, or indirectly, by the presence of oncogenes such as BCR-ABL1. DNA-PK-deficient quiescent leukemia cells and BRCA/DNA-PK-deficient proliferating leukemia cells were sensitive to PARP1 inhibitors that were administered alone or in combination with current antileukemic drugs.

View Article and Find Full Text PDF