The mouse brain contains a rich diversity of inhibitory neuron types that have been characterized by their patterns of gene expression. However, it is still unclear how these cell types are distributed across the mouse brain. We developed a computational method to estimate the densities of different inhibitory neuron types across the mouse brain.
View Article and Find Full Text PDFFrom the computational point of view, musculoskeletal control is the problem of controlling high degrees of freedom and dynamic multi-body system that is driven by redundant muscle units. A critical challenge in the control perspective of skeletal joints with antagonistic muscle pairs is finding methods robust to address this ill-posed nonlinear problem. To address this computational problem, we implemented a twofold optimization and learning framework to be specialized in addressing the redundancies in the muscle control .
View Article and Find Full Text PDFIn studies of the visual system as well as in computer vision, the focus is often on contrast edges. However, the primate visual system contains a large number of cells that are insensitive to spatial contrast and, instead, respond to uniform homogeneous illumination of their visual field. The purpose of this information remains unclear.
View Article and Find Full Text PDFFront Syst Neurosci
July 2020
Being able to replicate real experiments with computational simulations is a unique opportunity to refine and validate models with experimental data and redesign the experiments based on simulations. However, since it is technically demanding to model all components of an experiment, traditional approaches to modeling reduce the experimental setups as much as possible. In this study, our goal is to replicate all the relevant features of an experiment on motor control and motor rehabilitation after stroke.
View Article and Find Full Text PDF[This corrects the article DOI: 10.3389/fninf.2018.
View Article and Find Full Text PDFThe dendritic tree of neurons plays an important role in information processing in the brain. While it is thought that dendrites require independent subunits to perform most of their computations, it is still not understood how they compartmentalize into functional subunits. Here, we show how these subunits can be deduced from the properties of dendrites.
View Article and Find Full Text PDFDespite vast numbers of studies of stained cells in the mouse brain, no current brain atlas provides region-by-region neuron counts. In fact, neuron numbers are only available for about 4% of brain of regions and estimates often vary by as much as 3-fold. Here we provide a first 3D cell atlas for the whole mouse brain, showing cell positions constructed algorithmically from whole brain Nissl and gene expression stains, and compared against values from the literature.
View Article and Find Full Text PDFCombined efforts in the fields of neuroscience, computer science, and biology allowed to design biologically realistic models of the brain based on spiking neural networks. For a proper validation of these models, an embodiment in a dynamic and rich sensory environment, where the model is exposed to a realistic sensory-motor task, is needed. Due to the complexity of these brain models that, at the current stage, cannot deal with real-time constraints, it is not possible to embed them into a real-world task.
View Article and Find Full Text PDFWe prove that when a class of partial differential equations, generalized from the cable equation, is defined on tree graphs and the inputs are restricted to a spatially discrete, well chosen set of points, the Green's function (GF) formalism can be rewritten to scale as O(n) with the number n of inputs locations, contrary to the previously reported O(n(2)) scaling. We show that the linear scaling can be combined with an expansion of the remaining kernels as sums of exponentials to allow efficient simulations of equations from the aforementioned class. We furthermore validate this simulation paradigm on models of nerve cells and explore its relation with more traditional finite difference approaches.
View Article and Find Full Text PDFRandom networks of integrate-and-fire neurons with strong current-based synapses can, unlike previously believed, assume stable states of sustained asynchronous and irregular firing, even without external random background or pacemaker neurons. We analyze the mechanisms underlying the emergence, lifetime and irregularity of such self-sustained activity states. We first demonstrate how the competition between the mean and the variance of the synaptic input leads to a non-monotonic firing-rate transfer in the network.
View Article and Find Full Text PDFAlmost all research work in computational neuroscience involves software. As researchers try to understand ever more complex systems, there is a continual need for software with new capabilities. Because of the wide range of questions being investigated, new software is often developed rapidly by individuals or small groups.
View Article and Find Full Text PDFSpike synchronization is thought to have a constructive role for feature integration, attention, associative learning, and the formation of bidirectionally connected Hebbian cell assemblies. By contrast, theoretical studies on spike-timing-dependent plasticity (STDP) report an inherently decoupling influence of spike synchronization on synaptic connections of coactivated neurons. For example, bidirectional synaptic connections as found in cortical areas could be reproduced only by assuming realistic models of STDP and rate coding.
View Article and Find Full Text PDFExperimental data suggests that a first hypothesis about the content of a complex visual scene is available as early as 150 ms after stimulus presentation. Other evidence suggests that recognition in the visual cortex of mammals is a bidirectional, often top-down driven process. Here, we present a spiking neural network model that demonstrates how the cortex can use both strategies: Faced with a new stimulus, the cortex first tries to catch the gist of the scene.
View Article and Find Full Text PDFProgress in science depends on the effective exchange of ideas among scientists. New ideas can be assessed and criticized in a meaningful manner only if they are formulated precisely. This applies to simulation studies as well as to experiments and theories.
View Article and Find Full Text PDFThe neural simulation tool NEST (http://www.nest-initiative.org) is a simulator for heterogeneous networks of point neurons or neurons with a small number of compartments.
View Article and Find Full Text PDFHebbian learning in cortical networks during development and adulthood relies on the presence of a mechanism to detect correlation between the presynaptic and the postsynaptic spiking activity. Recently, the calcium concentration in spines was experimentally shown to be a correlation sensitive signal with the necessary properties: it is confined to the spine volume, it depends on the relative timing of pre- and postsynaptic action potentials, and it is independent of the spine's location along the dendrite. NMDA receptors are a candidate mediator for the correlation dependent calcium signal.
View Article and Find Full Text PDFNeuroscience increasingly uses computational models to assist in the exploration and interpretation of complex phenomena. As a result, considerable effort is invested in the development of software tools and technologies for numerical simulations and for the creation and publication of models. The diversity of related tools leads to the duplication of effort and hinders model reuse.
View Article and Find Full Text PDF