Publications by authors named "Marc de Kamps"

Human visual attention allows prior knowledge or expectations to influence visual processing, allocating limited computational resources to only that part of the image that are likely to behaviourally important. Here, we present an image recognition system based on biological vision that guides attention to more informative locations within a larger parent image, using a sequence of saccade-like motions. We demonstrate that at the end of the saccade sequence the system has an improved classification ability compared to the convolutional neural network (CNN) that represents the feedforward part of the model.

View Article and Find Full Text PDF

Artificial intelligence (AI) is a technology that enables computers to simulate human intelligence and has the potential to improve healthcare in a multitude of ways. However, there are also possibilities that it may continue, or exacerbate, current disparities. We discuss the problem of bias in healthcare and AI, and go on to highlight some of the ongoing and future solutions that are being researched in the area.

View Article and Find Full Text PDF
Article Synopsis
  • - *Oesophago-gastric cancer is hard to diagnose early due to non-specific symptoms; researchers believe machine learning can enhance diagnosis by analyzing electronic health records.* - *Using a dataset from the UK, five machine learning classifiers were developed, with Logistic Regression, Support Vector Machine, and Extreme Gradient Boosted Decision Trees showing the best accuracy and ability to detect cancer.* - *The machine learning models not only identified more cancer cases than the existing UK risk-assessment tool but did so with a low increase in false positives, suggesting potential for better early diagnosis and improved survival rates.*
View Article and Find Full Text PDF

Improvements to patient care through the development of automated image analysis in pathology are restricted by the small image patch size that can be processed by convolutional neural networks (CNNs), when compared to the whole-slide image (WSI). Tile-by-tile processing across the entire WSI is slow and inefficient. While this may improve with future computing power, the technique remains vulnerable to noise from uninformative image areas.

View Article and Find Full Text PDF

Population density techniques can be used to simulate the behavior of a population of neurons which adhere to a common underlying neuron model. They have previously been used for analyzing models of orientation tuning and decision making tasks. They produce a fully deterministic solution to neural simulations which often involve a non-deterministic or noise component.

View Article and Find Full Text PDF

The problem of how to create efficient multi-scale models of large networks of neurons is a pressing one. It requires a balance between computational efficiency and a reduction of the number of parameters involved against biological realism. Simulations of point-model neurons show very realistic features of neural dynamics but are very hard to configure and to analyse.

View Article and Find Full Text PDF

The influence of proprioceptive feedback on muscle activity during isometric tasks is the subject of conflicting studies. We performed an isometric knee extension task experiment based on two common clinical tests for mobility and flexibility. The task was carried out at four preset angles of the knee, and we recorded from five muscles for two different hip positions.

View Article and Find Full Text PDF

MIIND is a software platform for easily and efficiently simulating the behaviour of interacting populations of point neurons governed by any 1D or 2D dynamical system. The simulator is entirely agnostic to the underlying neuron model of each population and provides an intuitive method for controlling the amount of noise which can significantly affect the overall behaviour. A network of populations can be set up quickly and easily using MIIND's XML-style simulation file format describing simulation parameters such as how populations interact, transmission delays, post-synaptic potentials, and what output to record.

View Article and Find Full Text PDF

A key element of the European Union's Human Brain Project (HBP) and other large-scale brain research projects is the simulation of large-scale model networks of neurons. Here, we argue why such simulations will likely be indispensable for bridging the scales between the neuron and system levels in the brain, and why a set of brain simulators based on neuron models at different levels of biological detail should therefore be developed. To allow for systematic refinement of candidate network models by comparison with experiments, the simulations should be multimodal in the sense that they should predict not only action potentials, but also electric, magnetic, and optical signals measured at the population and system levels.

View Article and Find Full Text PDF
Article Synopsis
  • The text discusses the significance of using a mesoscopic level to study the brain, highlighting the limitations of traditional rate-based models and the shift towards more advanced population-level methods.
  • It introduces a new simulation method for neural populations that uses 2D point spiking neuron models, allowing for a more detailed representation of neural states without oversimplifying the state space.
  • The method is modular and permits the independent exploration of various neural dynamics and stochastic processes, making it especially useful for investigating complex behaviors influenced by noise, which is not captured in simpler 1D models.
View Article and Find Full Text PDF

We present a method for solving population density equations (PDEs)--a mean-field technique describing homogeneous populations of uncoupled neurons-where the populations can be subject to non-Markov noise for arbitrary distributions of jump sizes. The method combines recent developments in two different disciplines that traditionally have had limited interaction: computational neuroscience and the theory of random networks. The method uses a geometric binning scheme, based on the method of characteristics, to capture the deterministic neurodynamics of the population, separating the deterministic and stochastic process cleanly.

View Article and Find Full Text PDF

In his review of neural binding problems, Feldman (Cogn Neurodyn 7:1-11, 2013) addressed two types of models as solutions of (novel) variable binding. The one type uses labels such as phase synchrony of activation. The other ('connectivity based') type uses dedicated connections structures to achieve novel variable binding.

View Article and Find Full Text PDF

Computational models of learning have proved largely successful in characterizing potential mechanisms which allow humans to make decisions in uncertain and volatile contexts. We report here findings that extend existing knowledge and show that a modified reinforcement learning model, which has separate parameters according to whether the previous trial gave a reward or a punishment, can provide the best fit to human behavior in decision making under uncertainty. More specifically, we examined the fit of our modified reinforcement learning model to human behavioral data in a probabilistic two-alternative decision making task with rule reversals.

View Article and Find Full Text PDF

Synfire chains have long been proposed to generate precisely timed sequences of neural activity. Such activity has been linked to numerous neural functions including sensory encoding, cognitive and motor responses. In particular, it has been argued that synfire chains underlie the precise spatiotemporal firing patterns that control song production in a variety of songbirds.

View Article and Find Full Text PDF

MIIND (Multiple Interacting Instantiations of Neural Dynamics) is a highly modular multi-level C++ framework, that aims to shorten the development time for models in Cognitive Neuroscience (CNS). It offers reusable code modules (libraries of classes and functions) aimed at solving problems that occur repeatedly in modelling, but tries not to impose a specific modelling philosophy or methodology. At the lowest level, it offers support for the implementation of sparse networks.

View Article and Find Full Text PDF

Human cognition is unique in the way in which it relies on combinatorial (or compositional) structures. Language provides ample evidence for the existence of combinatorial structures, but they can also be found in visual cognition. To understand the neural basis of human cognition, it is therefore essential to understand how combinatorial structures can be instantiated in neural terms.

View Article and Find Full Text PDF

In this paper, we will first introduce the notions of systematicity and combinatorial productivity and we will argue that these notions are essential for human cognition and probably for every agent that needs to be able to deal with novel, unexpected situations in a complex environment. Agents that use compositional representations are faced with the so-called binding problem and the question of how to create neural network architectures that can deal with it is essential for understanding higher level cognition. Moreover, an architecture that can solve this problem is likely to scale better with problem size than other neural network architectures.

View Article and Find Full Text PDF