Recurrence is a critical aspect of breast cancer (BC) that is inexorably tied to mortality. Reuse of healthcare data through Machine Learning (ML) algorithms offers great opportunities to improve the stratification of patients at risk of cancer recurrence. We hypothesized that combining features from structured and unstructured sources would provide better prediction results for 5-year cancer recurrence than either source alone.
View Article and Find Full Text PDFBackground: Online symptom checkers are digital health solutions that provide a differential diagnosis based on a user's symptoms. During the coronavirus disease 2019 (COVID-19) pandemic, symptom checkers have become increasingly important due to physical distance constraints and reduced access to in-person medical consultations. Furthermore, various symptom checkers specialised in the assessment of COVID-19 infection have been produced.
View Article and Find Full Text PDFTo combat the pandemic of the coronavirus disease 2019 (COVID-19), numerous governments have established phone hotlines to prescreen potential cases. These hotlines have struggled with the volume of callers, leading to wait times of hours or, even, an inability to contact health authorities. Symptoma is a symptom-to-disease digital health assistant that can differentiate more than 20,000 diseases with an accuracy of more than 90%.
View Article and Find Full Text PDF