Islet-1 expression identifies populations of progenitor cells in embryonic, fetal, and newborn murine hearts that are able to give rise to all cardiac cell lineages ex vivo and in vivo. Using systematic immunohistochemistry, we investigated whether islet-1-positive cells are present in adult mouse heart from the perspective of their potential therapeutic utility. The presence, localization, and nature of islet-1-positive cells were assessed in mice of different strains, ages, and conditions.
View Article and Find Full Text PDFMyoblast migration requires matrix metalloproteinase (MMP) activity but the contribution of individual MMPs or tissue inhibitors of matrix metalloproteinase (TIMPs), particularly MMP-9 and TIMP-1, is lacking. Using two clones derived for differential regulation of MMP-2, MMP-9, and TIMP-1, we correlated protein expression with cell migration. MMP/TIMP regulation was determined by zymography, western blots, and quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR).
View Article and Find Full Text PDFMuscular dystrophies are often associated with significant cardiac disease that can be the prominent feature associated with gene mutations in sarcoglycan. Cardiac cell death is a main feature of cardiomyopathy in sarcoglycan deficiency and may arise as a cardiomyocyte intrinsic process that remains unclear. Deficiency of delta-sarcoglycan (delta-SG) induces disruption of the dystrophin-associated glycoprotein complex, a known cause of membrane instability that may explain cardiomyocytes cytosolic Ca2+ increase.
View Article and Find Full Text PDFBackground: The hamster strain CHF147 presents a progressive dilated cardiomyopathy (DCM) due to a large deletion of the delta-sarcoglycan gene that leads to heart failure. This cardiomyopathy induces premature death. We have previously shown that a short-term treatment using IGF-1 preserves cardiac structure and improves function of the CHF147 hamster.
View Article and Find Full Text PDFDilated cardiomyopathies (DCM) are due to progressive dilatation of the cardiac cavities and thinning of the ventricular walls and lead unavoidably to heart failure. They represent a major cause for heart transplantation and, therefore, defining an efficient symptomatic treatment for DCM remains a challenge. We have taken advantage of the hamster strain CHF147 that displays progressive cardiomyopathy leading to heart failure to test whether stimulation of a hypertrophic pathway could delay the process of dilatation.
View Article and Find Full Text PDF