Publications by authors named "Marc Vigny"

Aberrant activation of anaplastic lymphoma kinase (ALK) drives neuroblastoma (NB). Previous work identified the RET receptor tyrosine kinase (RTK) as a downstream target of ALK activity in NB models. We show here that ALK activation in response to ALKAL2 ligand results in the rapid phosphorylation of RET in NB cells, providing additional insight into the contribution of RET to the ALK-driven gene signature in NB.

View Article and Find Full Text PDF

NUMB is an evolutionarily conserved protein that plays an important role in cell adhesion, migration, polarity, and cell fate determination. It has also been shown to play a role in the pathogenesis of certain cancers, although it remains controversial whether NUMB functions as an oncoprotein or tumor suppressor. Here, we show that NUMB binds to anaplastic lymphoma kinase (ALK), a receptor tyrosine kinase aberrantly activated in several forms of cancer, and this interaction regulates the endocytosis and activity of ALK.

View Article and Find Full Text PDF

We explored the utility of targeting anaplastic lymphoma kinase (ALK), a cell surface receptor overexpressed on pediatric solid tumors, using chimeric antigen receptor (CAR)-based immunotherapy. T cells expressing a CAR incorporating the single-chain variable fragment sequence of the ALK48 mAb linked to a 4-1BB-CD3ζ signaling domain lysed ALK-expressing tumor lines and produced interferon-gamma upon antigen stimulation but had limited anti-tumor efficacy in two xenograft models of human neuroblastoma. Further exploration demonstrated that cytokine production was highly dependent upon ALK target density and that target density of ALK on neuroblastoma cell lines was insufficient for maximal activation of CAR T cells.

View Article and Find Full Text PDF

Activating mutations of the ALK gene have been identified in sporadic and familial cases of neuroblastoma (NB), a cancer of the peripheral nervous system, and are thought to be the primary mechanism of oncogenic activation of this receptor in this pediatric neoplasm. To address the possibility that ALK activation may occur through genomic rearrangements as detected in other cancers, we first took advantage of high-resolution array-comparative genomic hybridization to search for ALK rearrangements in NB samples. Using complementary experiments by capture/paired-end sequencing and FISH experiments, various types of rearrangements were fully characterized, including partial gains or amplifications, in several NB cell lines and primary tumors.

View Article and Find Full Text PDF

Recently, activating mutations of the full length ALK receptor, with two hot spots at positions F1174 and R1275, have been characterized in sporadic cases of neuroblastoma. Here, we report similar basal patterns of ALK phosphorylation between the neuroblastoma IMR-32 cell line, which expresses only the wild-type receptor (ALK(WT)), and the SH-SY5Y cell line, which exhibits a heterozygous ALK F1174L mutation and expresses both ALK(WT) and ALK(F1174L) receptors. We demonstrate that this lack of detectable increased phosphorylation in SH-SY5Y cells is a result of intracellular retention and proteasomal degradation of the mutated receptor.

View Article and Find Full Text PDF

Activating mutations in the kinase domain of anaplastic lymphoma kinase (ALK) have recently been shown to be an important determinant in the genetics of the childhood tumor neuroblastoma. Here we discuss an in-depth analysis of one of the reported gain-of-function ALK mutations-ALK(I1250T)-identified in the germ line DNA of one patient. Our analyses were performed in cell culture-based systems and subsequently confirmed in a Drosophila model.

View Article and Find Full Text PDF

Chronic acquired neuropathies of unknown origin are classified as chronic inflammatory demyelinating polyneuropathies (CIDP) and chronic idiopathic axonal polyneuropathies (CIAP). The diagnosis can be very difficult, although it has important therapeutic implications since CIDP can be improved by immunomodulating treatment. The aim of this study was to examine the possible abnormalities of nodal and paranodal regions in these two types of neuropathies.

View Article and Find Full Text PDF

Double-stranded RNA dependent kinase (PKR) is a pro-apoptotic kinase that controls protein translation. Previous studies revealed that activated PKR is increased in brains with Alzheimer's disease (AD). Glycogen Synthase Kinase Aβ (GSK-3β) is responsible for tau phosphorylation and controls several cellular functions also including apoptosis.

View Article and Find Full Text PDF

Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase essentially and transiently expressed during development of the central and peripheral nervous system. The nature of the cognate ligand of this receptor in Vertebrates is still a matter of debate. During synaptic transmission the release of ionic zinc found in vesicles of certain glutamatergic and gabaergic terminals may act as a neuromodulator by binding to pre- or post-synaptic receptors.

View Article and Find Full Text PDF

Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase (RTK) transiently expressed in specific regions of the central and peripheral nervous systems. In this study, we focused on the rat developing dorsal root ganglion (DRG). This ganglion is composed of heterogeneous sensory neurons characterized by the expression of RTK for neurotrophic factors, such as the nerve growth factor receptor TrkA or the glial-derived neurotrophic factor family receptor Ret, which are specifically detected in nociceptive neurons.

View Article and Find Full Text PDF

Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase essentially and transiently expressed during development in specific regions of the central and peripheral nervous system. ALK expression persists at a lower level in the adult brain. Thus, it might play an important role in both the normal development and function of the nervous system.

View Article and Find Full Text PDF

The Drosophila Alk receptor tyrosine kinase (RTK) drives founder cell specification in the developing visceral mesoderm and is crucial for the formation of the fly gut. Activation of Alk occurs in response to the secreted ligand Jelly Belly. No homologues of Jelly Belly are described in vertebrates, therefore we have approached the question of the evolutionary conservation of the Jeb-Alk interaction by asking whether vertebrate ALK is able to function in Drosophila.

View Article and Find Full Text PDF

Activation of the neuronal receptor tyrosine kinase ALK (anaplastic lymphoma kinase) promoted the neuron-like differentiation of PC12 cells through specific activation of the ERK MAP-kinase pathway. However, the nature of primary signaling events initiated is still poorly documented. Here, we established that Shc and FRS2 adaptors were recruited and phosphorylated following antibody-based ALK activation.

View Article and Find Full Text PDF

Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase, initially discovered as part of the NPM-ALK fusion protein, resulting from the t(2;5) translocation that is frequently associated with anaplastic large-cell lymphomas. The native ALK protein is normally expressed in the developing and, at a weaker level, adult nervous system. We recently demonstrated that the oncogenic, constitutively kinase-activated NPM-ALK protein was antiapoptotic when expressed in Jurkat lymphoblastic cells treated with cytotoxic drugs.

View Article and Find Full Text PDF

Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase essentially and transiently expressed in specific areas of the developing central and peripheral nervous systems. We previously demonstrated that a membrane-bound and constitutively active form of the ALK protein tyrosine kinase (PTK) domain induced the neuron-like differentiation of PC12 cells through specific activation of the mitogen-activated protein kinase (MAP kinase) pathway. Its PTK domain had been originally identified in a nucleo-cytosolic and constitutively active transforming protein, NPM-ALK.

View Article and Find Full Text PDF

Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase that is transiently expressed in specific regions of the central and peripheral nervous systems, suggesting a role in its normal development and function. The nature of the cognate ligands of ALK in vertebrate is still a matter of debate. We produced a panel of monoclonal antibodies (mAbs) directed against the extracellular domain of the human receptor.

View Article and Find Full Text PDF

HB-GAM/Pleiotrophin and Midkine (MK) are developmentally-regulated proteins with putative functions during cell growth and differentiation. Using the P19 cell which is a model to study the events associated with early development, we examined the expression and cellular localization of HB-GAM and MK during neural differentiation of P19 cells induced by retinoic acid (RA). The temporal expressions of HB-GAM and MK transcripts and both the levels and cellular localizations of the corresponding proteins appeared dramatically different.

View Article and Find Full Text PDF

Heparin affin regulatory peptide (HARP) is an heparin-binding growth factor, highly expressed in several primary human tumors and considered as a rate-limiting angiogenic factor in tumor growth, invasion, and metastasis. Implication of this protein in carcinogenesis is linked to its mitogenic, angiogenic, and transforming activities. Recently, we have demonstrated that the C-terminal residues 111-136 of HARP are required for its mitogenic and transforming activities (Bernard-Pierrot, I.

View Article and Find Full Text PDF