Publications by authors named "Marc Vervuurt"

Cerebral amyloid angiopathy (CAA) is a highly prevalent and progressive pathology, involving amyloid-β (Aβ) deposition in the cerebral blood vessel walls. CAA is associated with an increased risk for intracerebral hemorrhages (ICH). Insight into the molecular mechanisms associated with CAA pathology is urgently needed, to develop additional diagnostic tools to allow for reliable and early diagnosis of CAA and to obtain novel leads for the development of targeted therapies.

View Article and Find Full Text PDF

Background: Sporadic cerebral amyloid angiopathy (sCAA) is a disease characterised by the progressive deposition of the amyloid beta (Aβ) in the cerebral vasculature, capable of causing a variety of symptoms, from (mild) cognitive impairment, to micro- and major haemorrhagic lesions. Modern diagnosis of sCAA relies on radiological detection of late-stage hallmarks of disease, complicating early diagnosis and potential interventions in disease progression. Our goal in this study was to identify and validate novel biomarkers for sCAA.

View Article and Find Full Text PDF

Cerebral amyloid angiopathy (CAA) is a form of small vessel disease characterised by the progressive deposition of amyloid β protein in the cerebral vasculature, inducing symptoms including cognitive impairment and cerebral haemorrhages. Due to their accessibility and homogeneous disease phenotypes, animal models are advantageous platforms to study diseases like CAA. Untargeted proteomics studies of CAA rat models (e.

View Article and Find Full Text PDF

Background: To evaluate the potential of cerebrospinal fluid (CSF) levels of matrix metalloproteinases and tissue-type inhibitors (MMP; TIMP), and ratios of MMPs to TIMPs, to function as biomarkers for sporadic or hereditary cerebral amyloid angiopathy (CAA).

Methods: CSF concentrations of the matrix metalloproteinases MMP-2, MMP-9 and MMP-14, as well as the tissue inhibitors of metalloproteinases TIMP-1, TIMP-2 and TIMP-3, were determined using immunoassays. These assays were applied to two, independent study groups of sporadic CAA (sCAA) (n = 28/43) and control subjects (n = 40/40), as well as to groups of pre-symptomatic (n = 11) and symptomatic hereditary Dutch-CAA (D-CAA) patients (n = 12), and age-matched controls (n = 22/28, respectively).

View Article and Find Full Text PDF

Aims: The aim of this work is to study the association of urokinase plasminogen activator (uPA) with development and progression of cerebral amyloid angiopathy (CAA).

Materials And Methods: We studied the expression of uPA mRNA by quantitative polymerase chain reaction (qPCR) and co-localisation of uPA with amyloid-β (Aβ) using immunohistochemistry in the cerebral vasculature of rTg-DI rats compared with wild-type (WT) rats and in a sporadic CAA (sCAA) patient and control subject using immunohistochemistry. Cerebrospinal fluid (CSF) uPA levels were measured in rTg-DI and WT rats and in two separate cohorts of sCAA and Dutch-type hereditary CAA (D-CAA) patients and controls, using enzyme-linked immunosorbent assays (ELISA).

View Article and Find Full Text PDF