By structuring a luminescent dielectric interface as a relief diffraction grating with nanoscale features, it is possible to control the intensity and direction of the emitted light. The composite structure of the grating is based on a fluorescent dye (Lumogen F RED 305) dispersed in a polymeric matrix (poly(methyl methacrylate)). Measurements demonstrate a significant enhancement of the emitted light for specific directions and wavelengths when the grating interface is compared to nonstructured thin films made of the same material.
View Article and Find Full Text PDFLight-emitting diodes (LEDs) are driving a shift toward energy-efficient illumination. Nonetheless, modifying the emission intensities, colors and directionalities of LEDs in specific ways remains a challenge often tackled by incorporating secondary optical components. Metallic nanostructures supporting plasmonic resonances are an interesting alternative to this approach due to their strong light-matter interaction, which facilitates control over light emission without requiring external secondary optical components.
View Article and Find Full Text PDFPeriodic arrays of metallic nanoparticles can be used to enhance the emission of light in certain directions. We fabricated hexagonal arrays of aluminium nanoparticles combined with thin layers of luminescent material and optimized period (275 nm) and thickness (1500 nm) to obtain sideward directional emission into glass for a wavelength band around 620 nm. The key physics is that the luminescent layer acts as a waveguide, from which light is emitted at preferential angles using diffractive effects.
View Article and Find Full Text PDFWe demonstrate an effective light trapping geometry for thin-film solar cells that is composed of dielectric light scattering nanocavities at the interface between the metal back contact and the semiconductor absorber layer. The geometry is based on resonant Mie scattering. It avoids the Ohmic losses found in metallic (plasmonic) nanopatterns, and the dielectric scatterers are well compatible with nearly all types of thin-film solar cells, including cells produced using high temperature processes.
View Article and Find Full Text PDFUsing soft-imprint nanolithography, we demonstrate large-area application of engineered two-dimensional polarization-independent networks of silver nanowires as transparent conducting electrodes. These networks have high optical transmittance, low electrical sheet resistance, and at the same time function as a photonic light-trapping structure enhancing optical absorption in the absorber layer of thin-film solar cells. We study the influence of nanowire width and pitch on the network transmittance and sheet resistance, and demonstrate improved performance compared to ITO.
View Article and Find Full Text PDFA system comprising an aluminum nanoantenna array on top of a luminescent colloidal quantum dot waveguide and covered by a thermotropic liquid crystal (LC) is introduced. By heating the LC above its critical temperature, we demonstrate that the concomitant refractive index change modifies the hybrid plasmonic-photonic resonances in the system. This enables active control of the spectrum and directionality of the narrow-band (∼6 nm) enhancement of quantum dot photoluminescence by the metallic nanoantennas.
View Article and Find Full Text PDFWe use spectroscopic ellipsometry to investigate the angular-dependent optical modes of fishnet metamaterials fabricated by nanoimprint lithography. Spectroscopic ellipsometry is demonstrated as a fast and efficient method for metamaterial characterization and the measured polarization ratios significantly simplify the calibration procedures compared to reflectance and transmittance measurements. We show that the modes can be well identified by a combination of comparing different substrates and considering the angular dependence of the Wood's anomalies.
View Article and Find Full Text PDFNanophotonic structures have attracted attention for light trapping in solar cells with the potential to manage and direct light absorption on the nanoscale. While both randomly textured and nanophotonic structures have been investigated, the relationship between photocurrent and the spatial correlations of random or designed surfaces has been unclear. Here we systematically design pseudorandom arrays of nanostructures based on their power spectral density, and correlate the spatial frequencies with measured and simulated photocurrent.
View Article and Find Full Text PDFWe report on the design, fabrication, and measurement of ultrathin film a-Si:H solar cells with nanostructured plasmonic back contacts, which demonstrate enhanced short circuit current densities compared to cells having flat or randomly textured back contacts. The primary photocurrent enhancement occurs in the spectral range from 550 nm to 800 nm. We use angle-resolved photocurrent spectroscopy to confirm that the enhanced absorption is due to coupling to guided modes supported by the cell.
View Article and Find Full Text PDFA generic process has been developed to grow nearly defect-free arrays of (heterostructured) InP and GaP nanowires. Soft nano-imprint lithography has been used to pattern gold particle arrays on full 2 inch substrates. After lift-off organic residues remain on the surface, which induce the growth of additional undesired nanowires.
View Article and Find Full Text PDF