The efficacy of existing therapies and the discovery of innovative treatments for central nervous system (CNS) diseases have been limited by the lack of appropriate methods to investigate complex molecular processes at the synaptic level. To improve our capability to investigate complex mechanisms of synaptic signaling and remodeling, we designed a fluorescence hyperspectral imaging platform to simultaneously track different subtypes of individual neurotransmitter receptors trafficking in and out of synapses. This imaging platform allows simultaneous image acquisition of at least five fluorescent markers in living neurons with a high-spatial resolution.
View Article and Find Full Text PDFThe intrinsic near-infrared photoluminescence (fluorescence) of single-walled carbon nanotubes exhibits unique photostability, narrow bandwidth, penetration through biological media, environmental sensitivity, and both chromatic variety and range. Biomedical applications exploiting this large family of fluorophores will require the spectral and spatial resolution of individual (n,m) nanotube species' fluorescence and its modulation within live cells and tissues, which is not possible with current microscopy methods. We present a wide-field hyperspectral approach to spatially delineate and spectroscopically measure single nanotube fluorescence in living systems.
View Article and Find Full Text PDFDetection of sulfur by optical emission spectroscopy generally presents some difficulties because the strongest lines are in the vacuum UV below 185 nm and therefore are readily absorbed by oxygen molecules in air. A novel concept for a low-cost and efficient system to detect sulfur using near-IR bands by laser-induced breakdown spectroscopy is here proposed. This concept is based on customized thick holographic gratings as spectral filtering elements.
View Article and Find Full Text PDFFossil skeletons of Homo erectus and related specimens typically had heavy cranial and postcranial bones, and it has been hypothesised that these represent adaptations, or are responses, to various physical activities such as endurance running, heavy exertion, and/or aggressive behavior. According to the comparative biological data, however, skeletons that show a combination of disproportionally large diameters, extremely compact bone cortex, and very narrow medullary canals are associated with aquatic or semi-aquatic tetrapods that wade, and/or dive for sessile foods such as hard-shelled invertebrates in shallow waters. These so-called pachyosteosclerotic bones are less supple and more brittle than non-pachyosteosclerotic bones, and marine biologists agree that they function as hydrostatic ballast for buoyancy control.
View Article and Find Full Text PDFWe designed a near infrared tunable resonance Raman spectroscopy system based on a tandem of thick volume Bragg gratings (VBGs). VBGs are here the constituents of two light filtering units: a tunable laser line filter (LLF) and a tunable notch filter (NF). When adapted in a micro-Raman setup with a single stage monochromator (1800 gr/mm grating), the tandem of LLF and NF allowed measurements of Raman signals down to +/-20 cm(-1).
View Article and Find Full Text PDF