Publications by authors named "Marc V Garland"

The partial molar volumes, V(i), of the gas solutes H2, CO, and CO2, solvated in acetone, methanol, heptane, and diethylether are determined computationally in the limit of infinite dilution and standard conditions. Solutions are described with molecular dynamics simulations in combination with the OPLS-aa force field for solvents and customized force field for solutes. V(i) is determined with the direct method, while the composition of V(i) is studied with Kirkwood-Buff integrals (KBIs).

View Article and Find Full Text PDF

A robust heterogeneous self-supported chiral titanium cluster (SCTC) catalyst and its application in the enantioselective imine-cyanation/Strecker reaction is described under batch and continuous processes. One of the major hurdles in the asymmetric Strecker reaction is the lack of availability of efficient and reusable heterogeneous catalysts that work at room temperature. We exploited the readily hydrolyzable nature of titanium alkoxide to synthesize a self-supported chiral titanium cluster (SCTC) catalyst by the controlled hydrolysis of a preformed chiral titanium-alkoxide complex.

View Article and Find Full Text PDF

Heating (80 degrees C) the electron-precise, Sn-centred, icosahedral cluster [Rh(12)Sn(CO)(27)](4-) under a nitrogen atmosphere affords in sequence the electron-deficient icosahedral [Rh(12)Sn(CO)(26)](4-) and [Rh(12)Sn(CO)(25)](4-) derivatives. The reaction is reversible in solution and the parent compound is quantitatively regenerated upon exposure to carbon monoxide. The reaction course has been unravelled via a combination of Band-target Entropy Minimization (BTEM) IR analysis and X-ray studies.

View Article and Find Full Text PDF

A technique is demonstrated to detect DNA hybridization at low concentrations, based on Surface-Enhanced Raman Scattering (SERS) using silicon nanostructures coated with gold-silver as substrate. Standard silicon process technologies were employed to fabricate the SERS substrates featuring nanogaps with a characteristic distance of 15+/-10nm. Target DNA was hybridized with cysteine-modified Peptide Nucleic Acids (PNA), which was previously fixed into the nanogaps as the capture sites.

View Article and Find Full Text PDF